



**Application Guide** 

# Scroll compressors **PSH052** to **PSH105**

R410A-R454B,50Hz-60Hz





# **Contents**

| Safety and warnings                       | 5  |
|-------------------------------------------|----|
| Introduction                              | 6  |
| Product description                       | 6  |
| How do IDVs work?                         | 6  |
| Injection system                          | 8  |
| Vapor injection                           | 8  |
| Wet injection                             | 9  |
| Liquid injection                          | 10 |
| Product identification                    | 11 |
| Name Plate                                | 11 |
| Nomenclature                              | 11 |
| Compressors serial number                 | 12 |
| Certificates, declarations and approvals  | 13 |
| Certificates, declarations, and approvals | 13 |
| Low voltage directive 2014/35/EU          | 13 |
| Machines directive 2006/42/EC             | 13 |
| Pressure equipment directive 2014/68/EU   | 13 |
| Internal free volume                      | 13 |
| Refrigerants                              | 14 |
| General Information                       | 14 |
| R410A                                     | 14 |
| R454B                                     | 14 |
| Technical specification                   | 15 |
| 50-60 Hz data Single compressor           | 15 |
| Performance data                          | 16 |
| R410A 50-60 Hz, Single compressor         | 16 |
| R454B 50-60 Hz, Single compressor         | 16 |
| Sound and vibration data                  | 18 |
| Compressor sound radiation - Single       | 18 |
| Mechanical vibrations                     | 19 |
| Operating envelope data                   | 20 |



| Operating envelope                     | 20 |
|----------------------------------------|----|
| Dimensions                             | 23 |
| Single compressors                     | 23 |
| Tandem assemblies                      | 23 |
| Trio assemblies                        | 24 |
| Mechanical connections                 | 25 |
| Connection details                     | 25 |
| Design compressor mounting             | 25 |
| Design piping                          | 27 |
| Electrical connections                 | 31 |
| Wiring connections                     | 31 |
| Electrical Specifications              | 34 |
| Application                            | 38 |
| Manage oil in the circuit              | 38 |
| Manage sound and vibration             | 39 |
| Manage Operating envelope              | 39 |
| Manage superheat                       | 41 |
| Manage off cycle migration             | 43 |
| Manage injection                       | 45 |
| Power supply and electrical protection | 48 |
| Control logic                          | 50 |
| Reduce moisture in the system          | 52 |
| Assembly line procedure                | 53 |
| Commissioning                          | 56 |
| Dismantle and disposal                 | 57 |
| Packaging                              | 58 |
| Single pack                            | 58 |
| Industrial pack                        | 58 |
| Ordering                               | 59 |
| Single pack                            | 59 |
| Industrial pack                        | 59 |
| Accessories and Spare parts            | 61 |
| Solder sleeve adapter set              | 61 |
| Rotolock adapter                       | 61 |
|                                        |    |



| Gaskets                                       | 61 |
|-----------------------------------------------|----|
| Solder sleeve                                 | 61 |
| Rotolock nut                                  | 61 |
| Motor protection modules                      | 62 |
| Crankcase heaters                             | 62 |
| Mounting hardware                             | 62 |
| Lubricant                                     | 62 |
| Terminal boxes, covers and T-block connectors | 63 |
| Acoustic hoods                                | 63 |
| Miscellaneous                                 | 63 |
| Tandem kits                                   | 63 |
| Trio kits                                     | 64 |
| line support                                  | 65 |

# **Online support**

<u>Danfoss</u>

# Safety and warnings

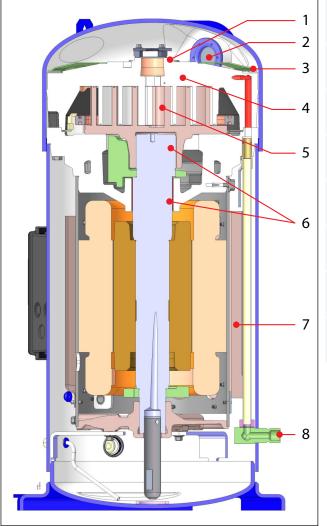
Danfoss compressors are designed and manufactured according to the state of the art and to valid European and US regulations. Particular emphasis has been placed on safety and reliability. Related instructions are highlighted with the following icons:



This icon indicates instructions to avoid reliability risk.

The purpose of this guideline is to help customers qualify compressors in the unit. You are strongly advise to follow these instructions. For any deviation from the guidelines, please contact Danfoss Technical Support. In any case, Danfoss accepts no liability as a result of the improper integration of the compressor into the unit by the system manufacturer.



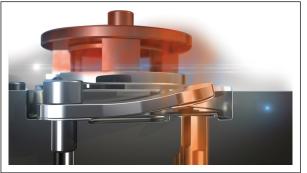

# Introduction

# **Product description**

Danfoss scroll compressor PSH for R410A and R454B is available as single compressor and can be assembled in tandem or trio combinations.

PSH series scroll compressor benefit from an improved design to achieve the highest efficiency and increased life time.

#### Figure 1: Cut Away PSH052-105




# 1 Intermediate discharge valves (IDVs) increase seasonal efficiency

- 2 Internal Non Return Valve (INRV) prevents excessive leak rate from high pressure side
- 3 Heat shield lowers the heat transfer between discharge and suction gas and the acoustic level
- 4 Integrated discharge gas temperature protection (DGT)
- 5 Built in pressure ratio optimization dedicated to heat pump application
- **6** Lead free polymer bearings improve behavior under poor lubrication conditions
- 7 Patented gas path flow with gas intake design induces higher resistance to liquid slugging
- 8 Injection port to both enlarge the application envelope and improve efficiency

# How do IDVs work?

Figure 2: Intermediate Discharge Valve (IDV)





Danfoss Intermediate Discharge Valves (IDVs) are located close to the discharge side of the compressor. They reduce excessive compression of refrigerant under part-load conditions while maintaining the same cooling capacity. The IDVs open when discharge pressure falls below the built-in optimization point. They adapt the effort of the motor to the varying load and pressure conditions in the system, thus reducing the effort of the motor and its electrical consumption and improving the system's seasonal energy efficiency.



# **Injection system**

# Vapor injection

The PSH052-105 compressor is fitted with an injection port that enables to carry out vapor injection by connecting an intermediate exchanger.

This vapor injection will have three benefits:

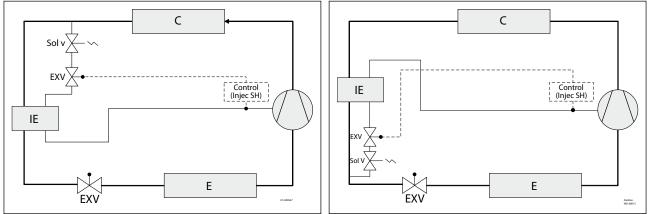
- Operating envelope enlargement by reduction of resulting discharge temperature.
- Cooling capacity and cooling efficiency improvement by reduction of the liquid temperature before expansion (Intermediate exchanger acting as economizer).
- Heat capacity and heating efficiency improvement by increase of the massflow at the condenser side (condenser massflow will be the sum of the evaporator massflow and the injected massflow).

The diagrams below explain the vapor injection principle, considering:

m inj: Injected massflow

**ΔT IntX:** Difference of temperature between the outlet of intermediate exchanger and the intermediate pressure bubble point.

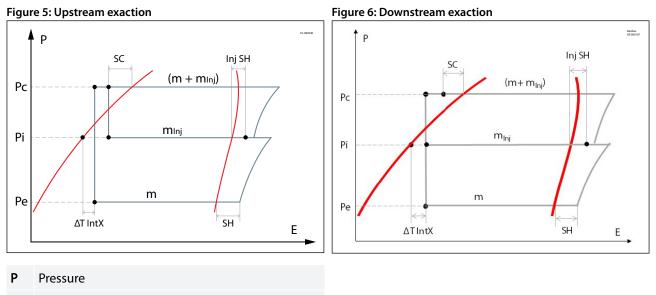
Suct SH: Superheat at compressor suction.


Inj SH: Superheat of injected gas (at intermediate pressure).

**SC:** Subcooling at intermediate exchanger inlet.

For system with vapor injection we should also consider, in addition of the suction superheat and the condenser subcooling, the injection superheat and Intermediate exchanger DeltaT as key influent parameters on the compressor performance.

#### Figure 3: Upstream exaction

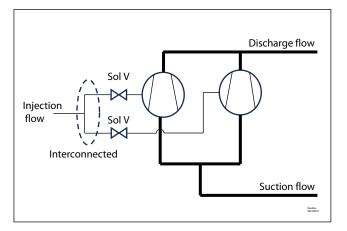

#### Figure 4: Downstream exaction



- C Condenser
- E Evaporator
- IE Intermediate Exchanger



#### Scroll compressors PSH052 to PSH105 | Injection system




#### E Enthalpy

The injection massflow must be regulated through an EXV, the injection superheat must be above 5 K.

For single compressor, it is highly recommended to install an additional solenoid valve on the injection line to prevent the refrigerant to come back directly into the compressor scroll set in case of power shortage.

For manifolding, it is mandatory to install an additional solenoid valve on each compressor's injection line in case of they are interconnected. When the compressor is OFF, the related solenoid valve must shut off the branch injection line to avoid refrigerant flowing into the stand by compressor.



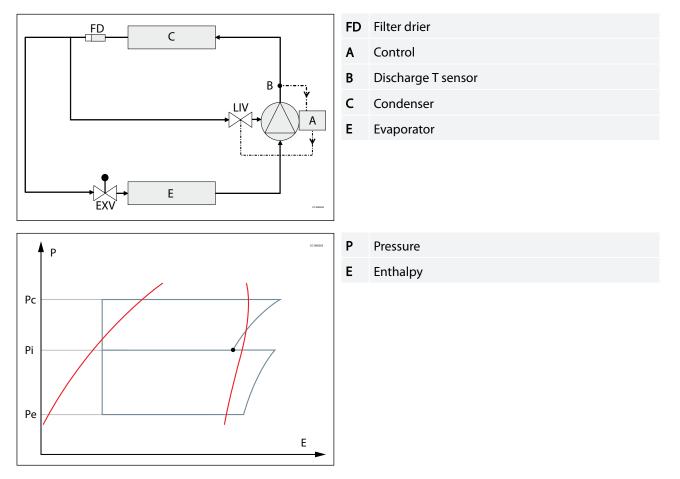
A The vapor injection must not be activated during inversion cycle of defrost mode

For compressor start-up, vapor injection valve opening must delay than compressor start-up at least 5 seconds.

## Wet injection

Whenever the vapor is no longer enough to cool the scroll and the application requires more envelope then the controller must reduce the injection SH down to zero and control the injection by reading the compressor DGT. This part is called wet (to differentiate from liquid). There is no gain in efficiency and capacity, only envelope. Considering the distance between sensor and scroll set, the wet injection is activated for when discharge temperature exceeds 121°C (250°F) at the measurement point (the surface of discharge pipe with 40mm away from the compressor discharge port). A minimum 4K (7.2°F) subcooling is necessary to ensure correct wet injection.Injection temperature at measurement point set point is 121°C (250°F), maximum safety value is 135°C (275°F).




# Liquid injection

Danfoss PSH052-105 requires liquid injection to maintain sufficiently low discharge gas temperature in the operating envelope. The PSH052-105 compressors are provided with a liquid injection connection.

The compressor's liquid injection port should be connected to the system main liquid line after condenser & filter drier. The liquid phase refrigerant is directly injected into the compressor scroll set. Liquid refrigerant vaporize in the scroll and absorb the heat, result in cooling down the compressor's discharge temperature.

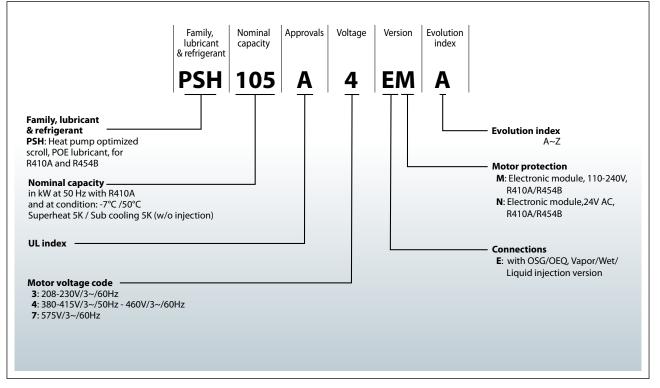
A LIV (Liquid Injection Valve) is needed to control the liquid injection mass flow, keep the constant compressor discharge gas temperature. The LIV's liquid injection regulation is based on the discharge gas temperature measured via temperature sensor located on discharge line. Considering the distance between sensor and scroll set, the liquid injection is activated for when discharge temperature exceed 121°C (250°F) at the measurement point (the surface of discharge pipe with 40mm away from the compressor discharge port).

A minimum 4K (7.2 °F) subcooling is necessary to ensure correct liquid injection.



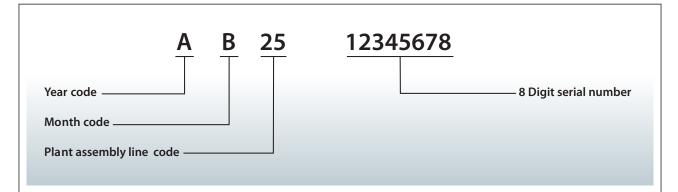


# **Product identification**


# Name Plate

#### Figure 7: Name Plate




# **Nomenclature**

The example below presents the compressor nomenclature which equals the technical reference as shown on the compressor nameplate. Code numbers for ordering are listed in section Ordering.





# **Compressors serial number**



# Table 1: Serial number code legend table

| Year       | code | Montl     | h code | Plant assembly line code |      |  |
|------------|------|-----------|--------|--------------------------|------|--|
| Year       | Code | Month     | Code   | Plant                    | Code |  |
| 1990, 2010 | А    | January   | А      | Trévoux, France          | 11   |  |
| 1991, 2011 | В    | February  | В      |                          |      |  |
| 1992, 2012 | С    | March     | С      |                          |      |  |
| 1993, 2013 | D    | April     | D      | Wuqing ,China            | 25   |  |
| 1994, 2014 | E    | May       | E      |                          |      |  |
| 1995, 2015 | F    | June      | F      |                          |      |  |
| 1996, 2016 | G    | July      | G      |                          |      |  |
| 1997, 2017 | Н    | August    | н      |                          |      |  |
| 1998, 2018 | J    | September | J      |                          |      |  |
| 1999, 2019 | К    | October   | К      |                          |      |  |
| 2000, 2020 | L    | November  | L      |                          |      |  |
| 2001, 2021 | М    | December  | М      |                          |      |  |
| 2002, 2022 | Ν    |           |        |                          |      |  |
| 2003, 2023 | Р    |           |        |                          |      |  |
| 2004, 2024 | Q    |           |        |                          |      |  |
| 2005, 2025 | R    |           |        |                          |      |  |
| 2006, 2026 | S    |           |        |                          |      |  |
| 2007, 2027 | Т    |           |        |                          |      |  |
| 2008, 2028 | U    |           |        |                          |      |  |
| 2009, 2029 | V    |           |        |                          |      |  |



# Certificates, declarations and approvals

# **Certificates, declarations, and approvals**

PSH scroll compressors comply with the following approvals and certificates. Certificate are listed on: Documentation for Commercial Compressor | Danfoss

#### Table 2: Certificates, declarations, and approvals

| Certificates, declarations, and approvals        | Certification logo | Models          |
|--------------------------------------------------|--------------------|-----------------|
| CE 0062, CE 0038 or CE 0094 (European Directive) | CE                 | All PSH models  |
| UL (Underwriters Laboratories)                   | c <b>AL</b> ® us   | All PSH models  |
| Other approvals / certificates                   |                    | Contact Danfoss |

# Low voltage directive 2014/35/EU

| Table 3: Low voltage directive 2014/35/EU |                           |                 |  |  |  |  |
|-------------------------------------------|---------------------------|-----------------|--|--|--|--|
|                                           | Products                  | PSH models      |  |  |  |  |
|                                           | Declaration of conformity | Contact Danfoss |  |  |  |  |

# Machines directive 2006/42/EC

#### Table 4: Machines directive 2006/42/EC

| Products                                    | PSH models      |
|---------------------------------------------|-----------------|
| Manufacturer's declaration of incorporation | Contact Danfoss |

# Pressure equipment directive 2014/68/EU

#### Table 5: Pressure equipment directive 2014/68/EU

| Products                                    | PSH052-065                              | PSH079-105                                |
|---------------------------------------------|-----------------------------------------|-------------------------------------------|
| Category PED R410A                          | II                                      | III                                       |
| Category PED R454B                          | III                                     | IV                                        |
| Maximum / Minimum temperature - Ts          | -35℃ < Ts < 52℃<br>-31°F < Ts < 125.6°F | -35°C < Ts < 52°C<br>-31°F < Ts < 125.6°F |
| Maximum allowable pressure (Low side) - Ps  | 31.1 bar(g)<br>451 psig                 | 31.1 bar(g)<br>451psig                    |
| Maximum allowable pressure (High side) - Ps | 48.7 bar(g)<br>706 psig                 | 48.7 bar(g)<br>706 psig                   |
| Declaration of conformity                   | Contact Danfoss                         | Contact Danfoss                           |

# **Internal free volume**

#### Table 6: Internal free volume

|          |                     |           | Internal free vol | lume without oil |         |           |  |
|----------|---------------------|-----------|-------------------|------------------|---------|-----------|--|
| Products | Products Low pressu |           | High pres         | ssure side       | Total   |           |  |
|          | [litre]             | [cu.inch] | [litre]           | [cu.inch]        | [litre] | [cu.inch] |  |
| PSH052   | 27.4                | 1672      | 2.8               | 171              | 30.2    | 1843      |  |
| PSH065   | 27.1                | 1654      | 2.8               | 171              | 29.9    | 1825      |  |
| PSH079   | 31.1                | 1898      | 4.1               | 250              | 35.2    | 2148      |  |
| PSH105   | 28.2                | 1721      | 3.8               | 232              | 32      | 1953      |  |



# Refrigerants

# **General Information**

When choosing a refrigerant, different aspects must be taken into consideration:

- Legislation (now and in the future)
- Safety
- · Application envelope in relation to expected running conditions
- Compressor capacity and efficiency
- Compressor manufacturer recommendations & Guidelines

Additional points could influence the final choice:

- Environmental considerations
- · Standardization of refrigerants and lubricants
- Refrigerant cost
- Refrigerant availability

# <u>R410A</u>

R410A is a HFC blend (R32: 50%; R125: 50%) with a zero Ozone Depletion Potential (ODP=0) and a Global Warming Potential of 1924/AR5 (2088/AR4). It is a near-azeotropic mixture with a temperature glide less than 0.2 K.

With its high net refrigeration effect coupled to a high density, the R410A has appeared in last decade to be the preferred refrigerant for use in commercial air conditioners and heat pumps.

# <u>R454B</u>

R454B is a HFO/HFC blend (R32 :68.9%; R1234yf: 31.1%) with a zero Ozone Depletion Potential (ODP=0) and a low Global Warming Potential (GWP: 467/AR5; 466/AR4). It is a near-azeotropic mixture with a temperature glide around 1 K.

R454B has very close match to R410A in terms of capacity and discharge temperature difference, and it offers better efficiencies compared to R410A.

R454B is classified A2L with low flammability properties. Please refer to European regulations and directives about the use of refrigerant of the A2L safety group (EN378, EN60335). Outside Europe refer to the local regulation

Danfoss

# **Technical specification**

# 50-60 Hz data Single compressor

#### Table 7: Technical specification 50-60 Hz data Single compressor

| Model  | Nominal<br>tons | Swept volume |           | Displacement (50 Hz) <sup>(1)</sup> |         | Displaceme | Displacement (60 Hz) <sup>(2)</sup> |                 | arge | Net we | eight <sup>(3)</sup> |
|--------|-----------------|--------------|-----------|-------------------------------------|---------|------------|-------------------------------------|-----------------|------|--------|----------------------|
|        | TR              | cm³/rev      | cu.in/rev | m³/h                                | cu.ft/h | m³/h       | cu.ft/h                             | dm <sup>3</sup> | oz   | kg     | lbs                  |
| PSH052 | 20              | 227.6        | 13.89     | 39.6                                | 1398    | 47.8       | 1688                                | 6.1             | 206  | 114    | 251                  |
| PSH065 | 25              | 272.8        | 16.65     | 47.5                                | 1677    | 57.3       | 2024                                | 6.1             | 206  | 117    | 258                  |
| PSH079 | 30              | 345          | 21.05     | 60                                  | 2119    | 72.3       | 2553                                | 6.1             | 206  | 162    | 357                  |
| PSH105 | 40              | 442.6        | 27.01     | 77                                  | 2719    | 92.9       | 3281                                | 6.1             | 206  | 176    | 388                  |

<sup>(1)</sup> Displacement at nominal speed: 2900rpm at 50 Hz
 <sup>(2)</sup> Displacement at nominal speed: 3500rpm at 60 Hz

<sup>(3)</sup> Net weight with oil charge

Danfoss

# Performance data

# R410A 50-60 Hz, Single compressor

#### Table 8: 50-60 Hz Performance data (Heating)

| Model |        | Nominal tons | Nominal Hea | ting capacity | Power input COP |      | E.E.R.  |
|-------|--------|--------------|-------------|---------------|-----------------|------|---------|
| IVIO  | Jael   | TR           | w           | Btu/h         | kW              | w/w  | Btu/h/W |
|       | PSH052 | 20           | 60200       | 205402        | 22.13           | 2.72 | 9.28    |
| 50Hz  | PSH065 | 25           | 71000       | 242252        | 25.82           | 2.75 | 9.38    |
| 50112 | PSH079 | 30           | 94000       | 320728        | 34.18           | 2.75 | 9.38    |
|       | PSH105 | 40           | 116500      | 397498        | 42.06           | 2.77 | 9.45    |
|       | PSH052 | 20           | 72000       | 245664        | 26.28           | 2.74 | 9.35    |
| 60Hz  | PSH065 | 25           | 84800       | 289338        | 30.84           | 2.75 | 9.38    |
| 00H2  | PSH079 | 30           | 112400      | 383509        | 40.87           | 2.75 | 9.38    |
|       | PSH105 | 40           | 140000      | 477680        | 50.54           | 2.77 | 9.45    |

#### Table 9: 50-60 Hz Performance data (Cooling)

| Model |        | Nominal tons | Nominal Cooling capacity |        | Power input | СОР  | E.E.R.  |
|-------|--------|--------------|--------------------------|--------|-------------|------|---------|
| MIC   | Jael   | TR           | w                        | Btu/h  | kW          | w/w  | Btu/h/W |
|       | PSH052 | 20           | 51500                    | 175718 | 17.11       | 3.01 | 10.27   |
| 50Hz  | PSH065 | 25           | 62200                    | 212226 | 20.13       | 3.09 | 10.54   |
| 50H2  | PSH079 | 30           | 79400                    | 270913 | 26.29       | 3.02 | 10.30   |
|       | PSH105 | 40           | 101400                   | 345977 | 32.71       | 3.10 | 10.58   |
|       | PSH052 | 20           | 62500                    | 213250 | 20.49       | 3.05 | 10.41   |
| 60Hz  | PSH065 | 25           | 75600                    | 257947 | 24.79       | 3.05 | 10.41   |
| OUHZ  | PSH079 | 30           | 95500                    | 325846 | 31.83       | 3.00 | 10.24   |
|       | PSH105 | 40           | 123600                   | 421723 | 39.87       | 3.10 | 10.58   |

#### • NOTE:

**TR**: Ton of Refrigeration,

**COP**: Coefficient Of Performance

**EER**: Energy Efficiency Ratio

Standard rating conditions For Heating(With injection): Evaporating temperature: -8°C (17.6°F), Condensing temperature: 58°C (136.4°F), Superheat: 8K (14.4°F), Subcooling: 5K (9°F), Injection Superheat: 5K (9°F)

For Cooling (Without injection): Evaporating temperature: 3°C (37.4°F), Condensing temperature: 50°C (122°F), Superheat: 8K (14.4°F), Subcooling: 5K (9°F)

Subject to modification without prior notification.

Data given for motor code 4 compressor with above conditions

For regular updates and detailed capacities, please refer to Coolselector<sup>®</sup>2.

# R454B 50-60 Hz, Single compressor

#### Table 10: 50-60 Hz Performance data (Heating)

| 84.0 | del    | Nominal tons | Nominal Hea | ting capacity | Power input | СОР  | E.E.R.  |
|------|--------|--------------|-------------|---------------|-------------|------|---------|
| IVIO | laei   | TR           | w           | Btu/h         | kW          | w/w  | Btu/h/W |
|      | PSH052 | 20           | 49300       | 168212        | 18.67       | 2.64 | 9.01    |
| 50Hz | PSH065 | 25           | 58000       | 197896        | 21.32       | 2.72 | 9.28    |
| 5082 | PSH079 | 30           | 76000       | 259312        | 28.68       | 2.65 | 9.04    |
|      | PSH105 | 40           | 96500       | 329258        | 35.48       | 2.72 | 9.28    |
|      | PSH052 | 20           | 59400       | 202673        | 22.08       | 2.69 | 9.18    |
| 604- | PSH065 | 25           | 69900       | 238499        | 25.51       | 2.74 | 9.35    |
| 60Hz | PSH079 | 30           | 90800       | 309810        | 33.88       | 2.68 | 9.14    |
|      | PSH105 | 40           | 115200      | 393062        | 42.04       | 2.74 | 9.35    |



#### Scroll compressors PSH052 to PSH105 | Performance data

#### Table 11: 50-60 Hz Performance data (Cooling)

| Mo    | odel   | Nominal tons 60<br>Hz | Nominal Coo | ling capacity | Power input | СОР  | E.E.R.  |
|-------|--------|-----------------------|-------------|---------------|-------------|------|---------|
|       |        | TR                    | w           | Btu/h         | kW          | W/W  | Btu/h/W |
|       | PSH052 | 20                    | 50000       | 170600        | 16.50       | 3.03 | 10.34   |
| 50Hz  | PSH065 | 25                    | 61200       | 208814        | 19.25       | 3.18 | 10.85   |
| 50112 | PSH079 | 30                    | 77500       | 264430        | 25.16       | 3.08 | 10.51   |
|       | PSH105 | 40                    | 102000      | 348024        | 31.19       | 3.27 | 11.16   |
|       | PSH052 | 20                    | 61000       | 208132        | 19.81       | 3.08 | 10.51   |
| 60Hz  | PSH065 | 25                    | 74300       | 253512        | 23.07       | 3.22 | 10.99   |
| 60HZ  | PSH079 | 30                    | 93000       | 317316        | 30.39       | 3.06 | 10.44   |
|       | PSH105 | 40                    | 123000      | 419676        | 37.85       | 3.25 | 11.09   |

**O** NOTE:

**TR**: Ton of Refrigeration,

**COP**: Coefficient Of Performance

**EER**: Energy Efficiency Ratio

Standard rating conditions For Heating(With injection): Evaporating temperature: -14°C (6.8°F), Condensing temperature: 54°C (129.2°F), Superheat: 8K (14.4°F), Subcooling: 5K (9°F), Injection Superheat: 5K (9°F)

For Cooling (Without injection): Evaporating temperature: 5°C (41°F), Condensing temperature: 50°C (122°F), Superheat: 10K (18°F), Subcooling: 0K (0°F)

Subject to modification without prior notification.

Data given for motor code 4 compressor with above conditions

For regular updates and detailed capacities, please refer to Coolselector<sup>®</sup>2.



# Sound and vibration data

Typical sounds and vibrations in systems can be broken down into the following three categories:

- Sound radiation (through air)
- Mechanical vibrations (through parts and structure)
- Gas pulsation (through refrigerant)

The following sections focus on the causes and methods of mitigation for each of the above sources.

# **Compressor sound radiation - Single**

For sound radiating from the compressors, the emission path is air and the sound waves are travelling directly from the machine in all directions.

#### Table 12: Compressor sound radiation (R410A Max. DGT 135°C)

| Compressor model | 50                | Hz                               | 60                | Acoustic hood                    |             |
|------------------|-------------------|----------------------------------|-------------------|----------------------------------|-------------|
| Compressor moder | Sound power dB(A) | Attenuation dB(A) <sup>(1)</sup> | Sound power dB(A) | Attenuation dB(A) <sup>(1)</sup> | code number |
| PSH052           | 82                | 6                                | 86                | 7                                | 120Z0926    |
| PSH065           | 85                | 6                                | 88                | 7                                | 120Z0926    |
| PSH079           | 86                | 6                                | 89                | 7                                | 120Z0926    |
| PSH105           | 89                | 6                                | 91                | 7                                | 120Z0926    |

<sup>(1)</sup> Attenuation given with acoustic hood

#### Table 13: Compressor sound radiation(R454B Max. DGT 135°C)

| Compressor model | 50                | Hz                               | 60                | Acoustic hood                    |             |
|------------------|-------------------|----------------------------------|-------------------|----------------------------------|-------------|
| Compressor moder | Sound power dB(A) | Attenuation dB(A) <sup>(1)</sup> | Sound power dB(A) | Attenuation dB(A) <sup>(1)</sup> | code number |
| PSH052           | 83                | 6                                | 87                | 7                                | 120Z0926    |
| PSH065           | 86                | 6                                | 89                | 7                                | 120Z0926    |
| PSH079           | 87                | 6                                | 90                | 7                                | 120Z0926    |
| PSH105           | 90                | 6                                | 92                | 7                                | 120Z0926    |

<sup>(1)</sup> Attenuation given with acoustic hood

#### **O** NOTE:

Sound power and attenuation are given at the condition -7/50/SH5/SC5 with vapor injection, measured in free space

For compressors running simultaneously,

- The global sound level of "n" identical compressors is:

 $L_{GLOBAL} = Li + 10 Log_{10} n$ 

Example for the trio

PSH315 = 3 × PSH105 (50 Hz)

 $L_{PSH105} = 89dB(A)$ 

 $L_{PSH315} = 89 + 10$   $Log_{10}$  3 = 93.8 dB(A)

- The global sound level of "n" different compressors with respectively Li sound level is:

$$L_{GLOBAL} = \prod_{i=1}^{i=n} \log_{10} (\sum 10^{0.1} * \text{Li})$$

Example for the tandem

PSH170 = PSH105+PSH065 (50 Hz)

L<sub>PSH065</sub> =85dB(A),L<sub>PSH105</sub> =89dB(A)



 $L_{PSH170} = 10 \log_{10}(10^{0.1 \times 85} + 10^{0.1 \times 89}) = 90.5 dB(A)$ 

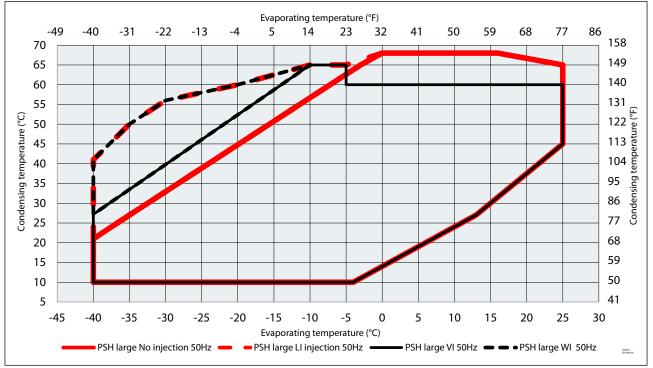
# **Mechanical vibrations**

A compressor generates some vibrations that propagate into the surrounding parts and structure. The vibration level of a PSH compressor alone does not exceed 154µm peak to peak. However, when system structure natural frequencies are close to running frequency, vibrations are amplified due to resonance phenomenon.

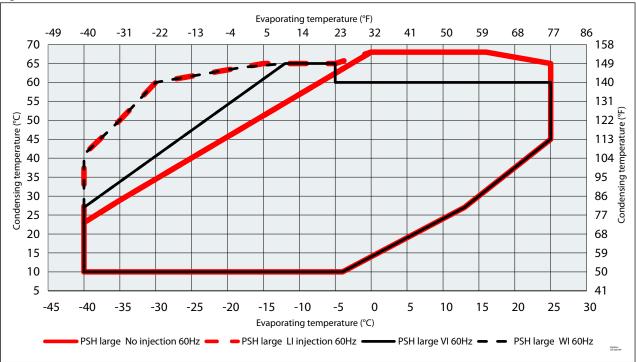
A high vibration level is damageable for piping reliability and generates high sound levels.



# **Operating envelope data**

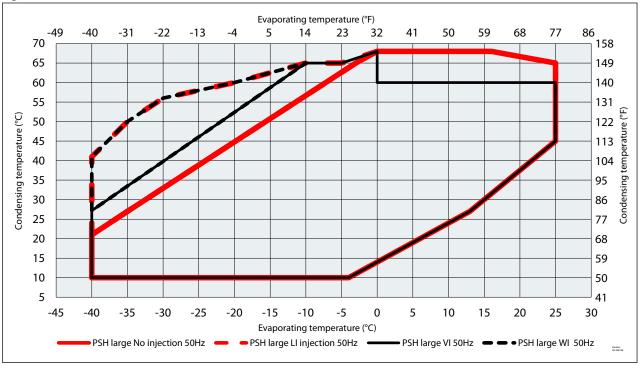

The operating envelope for PSH052-105 compressors is given in the figures below and guarantees reliable operation of the compressor for steady-state and transient operation.

A In every instance, the discharge temperature must be kept below 135°C.

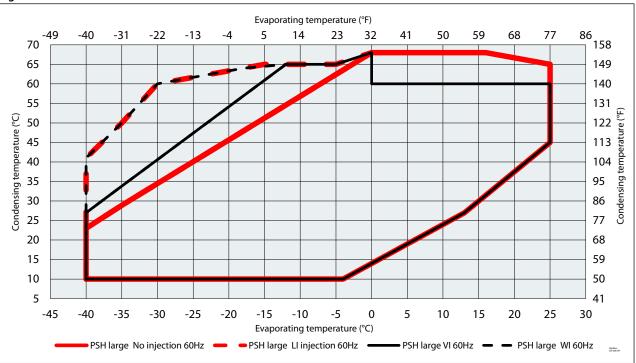

Steady-state operation envelope is valid for a suction superheat within 5K range at nominal Voltage. Minimum suction temperature cannot lower than -35°C. Minimum ambient temperature during start and operation cannot lower than -33°C.

# **Operating envelope**

Figure 8: PSH052-105 R410A SH5K8 50Hz






#### Figure 9: PSH052-105 R410A SH5K8 60Hz

#### Figure 10: PSH052-105 R454B SH5K 50Hz







#### Figure 11: PSH052-105 R454B SH5K 60Hz

#### **O** NOTE:

The application envelope of a cross-platform manifold results in the conjunction of map limitations of compressors composing the tandem.

# **Pressure settings**

#### Table 14: Pressure settings

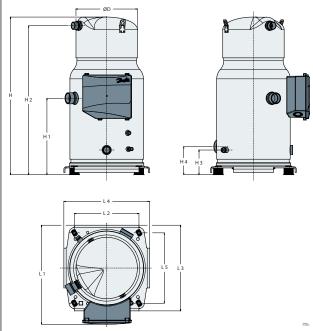
| Pressure settings                             |        | R410A    | R454B                                                              |
|-----------------------------------------------|--------|----------|--------------------------------------------------------------------|
| Working range high side                       | bar(g) | 9.9-44.5 | 9-41.2                                                             |
| Working range high side                       | psig   | 144-645  | 131-598                                                            |
| Working range low side                        | bar(g) | 0.8-15.5 | 0.6-14.2                                                           |
| working range low side                        | psig   | 11-225   | 8-206                                                              |
| Maximum high pressure safety switch setting   | bar(g) | 45.9     | 42.6                                                               |
| Maximum high pressure salety switch setting   | psig   | 666      | 618                                                                |
| Minimum low pressure safety switch setting    | bar(g) | 0.6      | 0.4                                                                |
| minimum low pressure salety switch setting    | psig   | 8        | 5                                                                  |
| Minimum low pressure pump-down switch setting | bar(g) |          | ssure of the unit and not below the mini-<br>safety switch setting |
| minimum fow pressure pump-down switch setting | psig   |          | w the minimum low pressure safety switch ting                      |

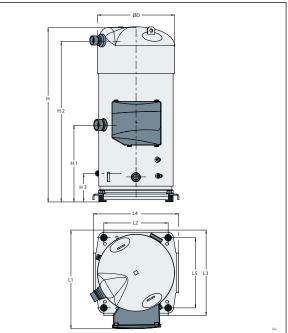
# High and low pressure protection

Low-pressure (LP) and high-pressure (HP) safety switches must never be bypassed nor delayed and must stop all the compressors.

LP switch auto restart must be limited to 5 times within 12 hours.

HP safety switch must be reset manually.


Depending on application operating envelope, you must define HP and LP limits within operating envelope and pressure setting table above.




# Dimensions

# **Single compressors**







| Compressor model | Motor<br>voltage<br>code | D (mm) | H (mm) | H1<br>(mm) | H2<br>(mm) | H3<br>(mm) | H4<br>(mm) | L1 (mm) | L2 (mm) | L3 (mm) | L4 (mm) | L5 (mm) | Outline<br>drawing<br>number |
|------------------|--------------------------|--------|--------|------------|------------|------------|------------|---------|---------|---------|---------|---------|------------------------------|
| PSH052-PSH065    | 3,4,7                    | 265.9  | 682.5  | 331        | 645        | 107        | 122        | 429     | 279.4   | 371     | 370.8   | 305     | 8556466                      |
| PSH079           | 4,7                      | 333    | 752.5  | 329.5      | 693.5      | 120.5      | 120.4      | 429     | 279.4   | 371     | 370.8   | 305     | 8556468                      |
| PSH079           | 3                        | 333    | 752.5  | 329.5      | 693.5      | 120.5      | 120.4      | 484     | 279.4   | 371     | 370.8   | 305     | 8556478                      |
| PSH105           | 4,7                      | 333    | 755.5  | 332.5      | 696.5      | 123.5      | 123.4      | 429     | 279.4   | 371     | 370.8   | 305     | 8556470                      |
| PSH105           | 3                        | 333    | 755.5  | 332.5      | 696.5      | 123.5      | 123.4      | 446     | 279.4   | 371     | 370.8   | 305     | 8556449                      |

Tandem assemblies Figure 14: Outline drawing number 1

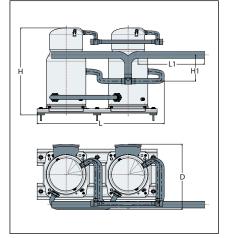



Figure 15: Outline drawing number 2

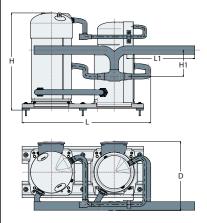
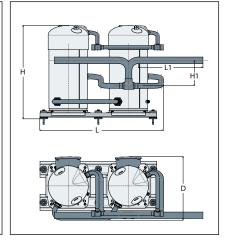




Figure 16: Outline drawing number 3





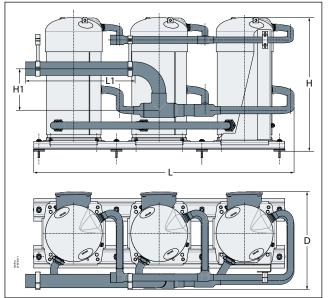
#### Scroll compressors PSH052 to PSH105 | Dimensions

#### Table 15: Tandem assemblies

| Tandem model | Composition        | Motor volt- |      | L    |     | )    | ŀ   | ł    | L   | 1    | H   | 1    | Outlin | e drawing |
|--------------|--------------------|-------------|------|------|-----|------|-----|------|-----|------|-----|------|--------|-----------|
| Tandem model | Composition        | age code    | mm   | inch | mm  | inch | mm  | inch | mm  | inch | mm  | inch | nı     | umber     |
| PSH104E      | PSH052+PSH052      | 3, 4, 7, 9  | 1024 | 40.3 | 527 | 20.7 | 702 | 27.6 | 536 | 21.1 | 211 | 8.3  | 1      | 8556339   |
| PSH130E      | PSH065+PSH065      | 3, 4, 7, 9  | 1024 | 40.3 | 527 | 20.7 | 702 | 27.6 | 536 | 21.1 | 211 | 8.3  | 1      | 8556339   |
| PSH158E      | PSH079+PSH079      | 4, 7, 9     | 1026 | 40.4 | 527 | 20.7 | 775 | 30.5 | 536 | 21.1 | 211 | 8.3  | 3      | 8556409   |
| FJHIJOL      | F 3H07 9+F 3H07 9  | 3           | 1026 | 40.4 | 582 | 22.9 | 775 | 30.5 | 536 | 21.1 | 211 | 8.3  | 3      | 8330409   |
| PSH170U      | PSH065+PSH105      | 4, 7, 9     | 1025 | 40.4 | 549 | 21.6 | 775 | 30.5 | 540 | 21.3 | 211 | 8.3  | 2      | 8556406   |
| F311700      | F3H005+F3H105      | 3           | 1025 | 40.4 | 566 | 22.3 | 775 | 30.5 | 540 | 21.3 | 211 | 8.3  | 2      | 8330400   |
| PSH184U      | PSH079+PSH105      | 4, 7, 9     | 1007 | 39.6 | 560 | 22   | 775 | 30.5 | 540 | 21.3 | 211 | 8.3  | 3      | 8556407   |
| 1311040      | 1 31107 9+1 311103 | 3           | 1007 | 39.6 | 615 | 24.2 | 775 | 30.5 | 540 | 21.3 | 211 | 8.3  | J      | 0550407   |
| PSH210E      | PSH105+PSH105      | 4, 7, 9     | 1025 | 40.4 | 550 | 21.7 | 775 | 30.5 | 540 | 21.3 | 211 | 8.3  | 3      | 8556408   |
| I JIZTUE     | 131103#131103      | 3           | 1025 | 40.4 | 567 | 22.3 | 775 | 30.5 | 540 | 21.3 | 211 | 8.3  | 5      | 0550408   |

#### **O** NOTE:

Tandems to be achieved by assembly of individual compressors.


By convention, the last letter of tandems designation has been set to help to discern easily which type of manifold we are considering

**U** : Uneven tandem

E : Even tandem

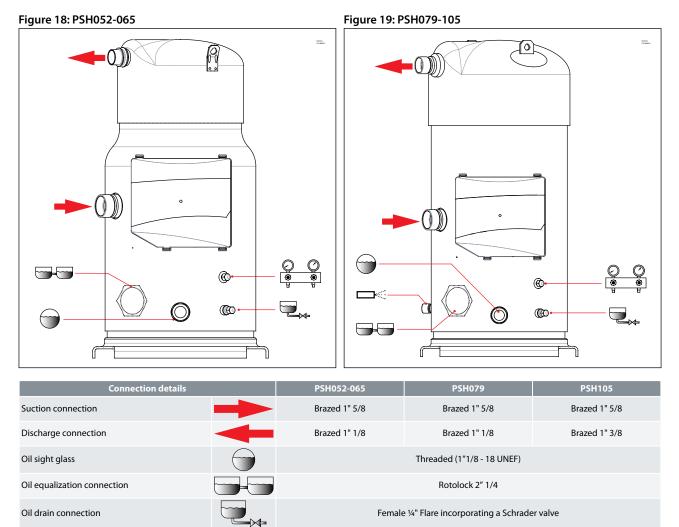
# **Trio assemblies**

Figure 17: Outline drawing number 5



#### Table 16: Trio assemblies

| Trio model | Composition       | Motor volt- | 1    |      |     | )                          | H   | 1    | L   | 1    | Н       | 1    | Outline draw- |          |
|------------|-------------------|-------------|------|------|-----|----------------------------|-----|------|-----|------|---------|------|---------------|----------|
| momoder    | composition       | age code    | mm   | inch | mm  | inch                       | mm  | inch | mm  | inch | mm      | inch | in            | g number |
| PSH237T    | PSH079 + PSH079 + | 4, 7, 9     | 1530 | 60.2 | 545 | 545 21.5 783 30.8 535 21.1 |     | 211  | 8.3 | 4    | 8556411 |      |               |          |
| F3H2371    | PSH079            | 3           | 1530 | 60.2 | 600 | 23.6                       | 783 | 30.8 | 535 | 21.1 | 211     | 8.3  | 4             | 8550411  |
| PSH263T    | PSH079 + PSH079 + | 4, 7, 9     | 1528 | 60.2 | 545 | 21.5                       | 783 | 30.8 | 535 | 21.1 | 211     | 8.3  | 4             | 8556410  |
| F3H2031    | PSH105            | 3           | 1528 | 60.2 | 600 | 23.6                       | 783 | 30.8 | 535 | 21.1 | 211     | 8.3  | 4             | 8550410  |
| PSH289T    | PSH105 + PSH105 + | 4, 7, 9     | 1526 | 60   | 574 | 22.6                       | 783 | 30.8 | 640 | 25.2 | 244     | 9.6  | 4             | 8556412  |
| F 3112091  | PSH079            | 3           | 1526 | 60   | 629 | 24.8                       | 783 | 30.8 | 640 | 25.2 | 244     | 9.6  | 4             | 0550412  |
| PSH315T    | PSH105 + PSH105 + | 4, 7, 9     | 1526 | 60   | 574 | 22.6                       | 783 | 30.8 | 640 | 25.2 | 244     | 9.6  | 4             | 9556412  |
| 1212121    | PSH105            | 3           | 1526 | 60   | 591 | 23.3                       | 783 | 30.8 | 640 | 25.2 | 244     | 9.6  | 4             | 8556413  |


#### **O** NOTE:

Trio to be achieved by assembly of individual compressors

Danfoss

# **Mechanical connections**

# **Connection details**



Low pressure gauge port (Shrader)

Injection connection

# **Design compressor mounting**

# General requirements

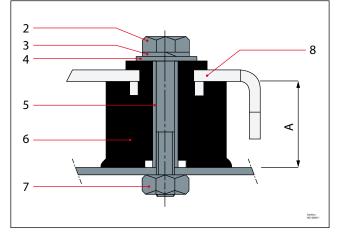
During operation, the maximum inclination from the vertical plane must not exceed 3 degrees.

## Single requirements

#### Mounting of PSH052-079

Compressors PSH052-079 is delivered with rubber grommets and steel mounting sleeve used to isolate the compressor from the base frame.

The grommets must be compressed until contact between the flat washer and the steel mounting sleeve is established. The required bolt size for the PSH052-079 compressors is HM8-55. This bolt must be tightened to a torque of 21Nm.


Male ¼" Flare incorporating a Schrader valve

5/8" ODF



#### Scroll compressors PSH052 to PSH105 | Mechanical connections

# 



5

6

7

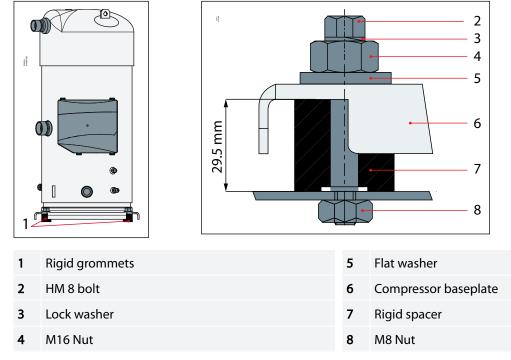
8

Nut

Steel mounting sleeve

Compressor base plate

Rubber grommet


- A PSH052-065: 27.5 mm / 1.08 inch PSH079: 26.5mm / 1.04 inch
- 1 Rubber grommets from kit
- 2 HM 8 bolt
- 3 Lock washer
- 4 Flat washer

# Mounting of PSH105

Compressors PSH105 is delivered with rigid grommets used to isolated the compressor from the base frame.

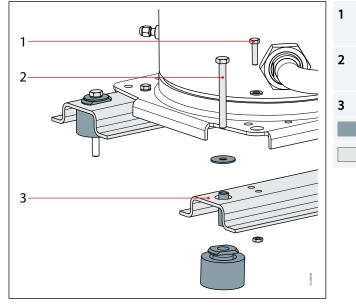
The M16 nut must be tightened to a torque of 55 Nm. The HM8 bolt must be tightened to a torque of 16Nm.

Figure 22: Rigid grommets from kit Figure 23: Rigid grommets



# **Tandem requirements**

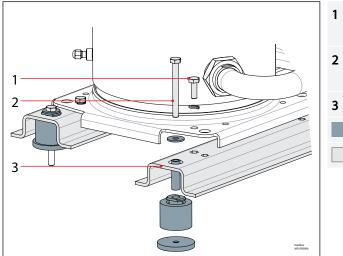
For parallel mounting, the compressors can be mounted directly on the rails. Rubber grommets and spacers must be installed below the rails.


# Figure 20: Rubber grommets from kit Figure 21: Rubber grommets

Danfoss

These parts are included in accessories.

#### Mounting of PSH104-210


#### Figure 24: PSH104 to PSH210 mounting



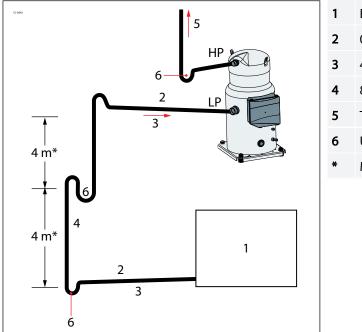
- HM10 x 30 class 10.9 Tightening torque 50 Nm
- HM10 x 100 class 10.9 Tightening torque 50Nm
- Thickness : 5mm (0.2 inch)
- Included in tandem kit
- Not supplied

#### Mounting of PSH237-315

#### Figure 25: PSH237-315 mounting



| HM10 x 30 class 10.9 Tightening torque 50<br>Nm |
|-------------------------------------------------|
| HM10 x 100 class 10.9 Tightening torque 50Nm    |
| Thickness : 5.5mm (0.22 inch)                   |
| Included in trio kit                            |
| Not supplied                                    |
|                                                 |

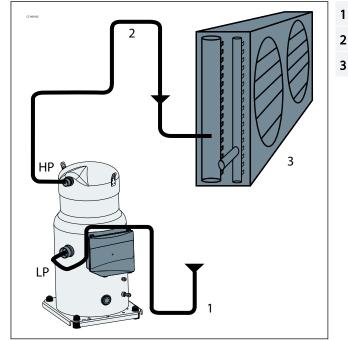

# **Design piping**

## **General requirements**

Proper piping practices should be employed to:

- 1. Ensure adequate oil return, even under minimum load conditions (refrigerant speed, piping slopes...). For validation tests see section Manage oil in the circuit.
- 2. Avoid condensed liquid refrigerant from draining back to the compressor when stopped (discharge piping upper loop). For validation tests see section Manage off cycle migration.
- 3. Piping should be designed with adequate three-dimensional flexibility to avoid excess vibration. It should not be in contact with the surrounding structure, unless a proper tubing mount has been installed. For more information on noise and vibration, see section Sound and vibration data.






#### Figure 26: Proper piping - Evaporator



- 0.5% slope
- 4m/s or more
- 8 to 12 m/s
- To condenser
- U-trap, as short as possible
- Max.

Figure 27: Proper piping - Condenser



- 3D flexibility
- 2 Upper loop
- 3 Condenser

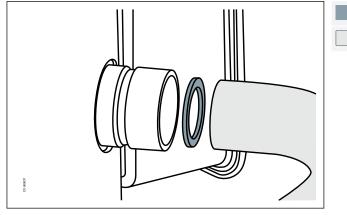
# Tandem and trio requirements (Static)

Tandem and trio use static oil balancing principle to equalize oil level between the compressors by gravity. This is ensured by a precise suction and oil equalization piping design.

The discharge line has no impact on oil balancing. It is shown with tee, to indicate that both left and right side discharge headers are possible.

By default, PSH tandems and trios are not factory-built. To complete an assembly in the field, you will need:

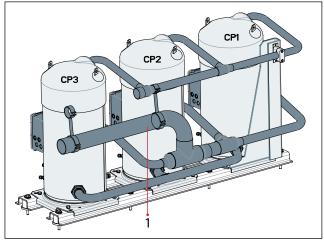
- Tubings, according to specific outline drawings indicated in the following table.
- Manifolding accessory kit.
- · Compressors.




A Suction and oil equalization piping drawings must be respected (diameters, minimum straight lengths, ...)

# Suction washer position

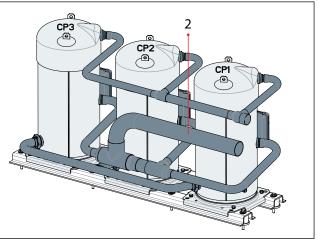
A Depending on manifold configuration, it is essential to equalize the pressure of compressor sumps. Hence, a suction washer must be added on certain compressors according to the table. Suction washers are included in tandem or trio accessory kits as described in the illustrations.


#### Figure 28: Suction washer position



Included in tandem or trio accessory kit Not supplied

By convention, the compressor order (No.1, No.2 ...) is defined counting from left to right, placed on the side facing the electrical boxes of the compressors (see example below on a trio)


#### Figure 29: Example of right suction



1 Trio models with Right suction

- 2 Trio models with Left suction
- Cp1 Compressor 1

#### Figure 30: Example of left suction



| Cp2 | Compressor 2 |
|-----|--------------|
| Ср3 | Compressor 3 |

# Tandem models

#### Table 17: Tandem models

| Model   | Composition Cp1 + Cp2 | Suction | Dis-<br>charge | Oil equaliza-<br>tion | Outline<br>drawing<br>number | Suction<br>from | Washer inner di-<br>ameter | Washer in suction<br>of | Tandem kit<br>code |
|---------|-----------------------|---------|----------------|-----------------------|------------------------------|-----------------|----------------------------|-------------------------|--------------------|
| PSH104E | PSH052+PSH052         | 2"1/8   | 1"5/8          | 1"3/8                 | 8556339                      | Left<br>Right   | Not Needed                 | -                       | 120Z0792           |
| PSH130E | PSH065+PSH065         | 2"1/8   | 1"5/8          | 1"3/8                 | 8556339                      | Left<br>Right   | Not Needed                 | -                       | 120Z0792           |
| PSH158E | PSH079+PSH079         | 2"1/8   | 1"5/8          | 1"3/8                 | 8556409                      | Left<br>Right   | Not Needed                 | -                       | 120Z0792           |

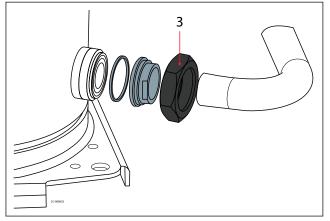


## Scroll compressors PSH052 to PSH105 | Mechanical connections

| Model   | Composition Cp1 + Cp2 | Suction           | Dis-<br>charge | Oil equaliza-<br>tion | Outline<br>drawing<br>number | Suction<br>from | Washer inner di-<br>ameter | Washer in suction<br>of | Tandem kit<br>code |
|---------|-----------------------|-------------------|----------------|-----------------------|------------------------------|-----------------|----------------------------|-------------------------|--------------------|
| PSH170U | PSH065+PSH105         | 2"5/8             | 1"5/8          | 1"5/8                 | 8556406                      | Left            | 28mm(1.10inch)             | Cp1                     | 12070904           |
| F3H1700 | F3H003+F3H103         | 2 5/8 1 5/8 1 5/8 | 0550400        | Right                 | 27mm(1.06inch)               | Cp1             | 12020904                   |                         |                    |
| PSH184U | PSH079+PSH105         | 2"5/8             | 1"5/8          | 1"5/8                 | 8556407                      | Left            | 33mm(1.30inch)             | Cp1                     | 120Z0903           |
| F3H1040 | F3H079+F3H103         | 2 5/8             | 1 3/8          | 1 3/0                 | 0330407                      | Right           | 30mm(1.18inch)             | Cp1                     | 12020903           |
|         | PSH105+PSH105         | 2"5/8             | 1"5/8          | 1"5/8                 | 8556408                      | Left            | Not Needed                 |                         | 120Z0785           |
| PSH210E | F3H103+P3H103         | 2 3/0             | 1 3/6          | 1 3/0                 | 0550400                      | Right           | Not needed                 | -                       | 12020765           |

#### Trio models

#### Table 18: Trio models


| Model   | Composition Cp1 + Cp2 +<br>Cp3 | Suction | Dis-<br>charge | Oil<br>equali-<br>zation | Outline<br>drawing<br>number | Suction<br>from | Washer inner diameter                       | Washer in suction of | Trio kit code |
|---------|--------------------------------|---------|----------------|--------------------------|------------------------------|-----------------|---------------------------------------------|----------------------|---------------|
| PSH237T | PSH079+PSH079+PSH079           | 2"5/8   | 1"5/8          | 1"5/8                    | 8556411                      | Left            | cp1:30mm(1.18inch)<br>cp3:30mm(1.18inch)    | Cp1&cp3              | 120Z0900      |
|         |                                |         |                |                          |                              | Right           | cp1:31mm(1.22inch)                          | Cp1                  |               |
| PSH263T | PSH079+PSH079+PSH105           | 2"5/8   | 1"5/8          | 1"5/8                    | 8556410                      | Left            | 29mm(1.14inch)                              | Cp1                  | 120Z0901      |
|         |                                |         |                |                          |                              | Right           | 29mm(1.14inch)                              | Cp1                  |               |
| PSH289T | PSH105+PSH105+PSH079           | 3"1/8   | 1"5/8          | 1"5/8                    | 8556412                      | Left            | 29mm(1.14inch)                              | Cp3                  | 120Z0901      |
| P3H2091 |                                |         |                |                          |                              | Right           | 29mm(1.14inch)                              | Cp3                  |               |
| PSH315T | PSH105+ PSH105 +PSH105         | 3"1/8 2 | 2"1/8          | 1"5/8                    | 8556413                      | Left            | Cp2: 33mm(1.30inch), Cp3:<br>32mm(1.26inch) | Cp2 & CP3            | 120Z0902      |
|         |                                |         |                |                          |                              | Right           | CP2:33mm(1.30inch)<br>CP3:33mm(1.30inch)    | Cp2 & CP3            |               |

# Oil equalization design PSH104-315

The oil level is balanced by a pipe of 1"3/8 or 1"5/8. To connect the equalization line on rotolock connections, the adaptor sleeves included in the tandem or trio accessory kit must be used.

3

#### Figure 31: PSH104-315



- Tightening torque 145Nm
  - Supplied with the compressor
- Included in tandem kit



# **Electrical connections**

# **Wiring connections**

For PSH compressors, electrical power is connected to the compressor terminals by M5 studs and nuts. The maximum tightening torque is 3 Nm.

**A**Cable gland or similar protection component must be used on electrical box's knockouts to against accidental contact with electrical parts inside.

# PSH052-105 (Except PSH079/105 code 3)

The terminal box is provided with 2 triple knockouts and 1 single knockout for power supply and 4 double knockouts for the safety control circuit.

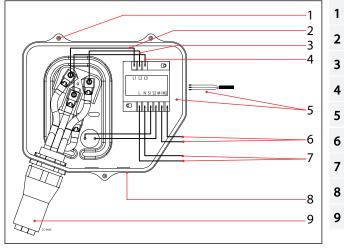

The 3 power supply knockouts accommodate the following diameters:

- Ø 50.8mm (φ 2inch) (UL 1"1/2 conduit) & Ø 43.7mm (φ 1.72inch) (UL 1"1/4 conduit) & Ø 34.5mm (φ 1.36 inch) (UL 1" conduit)
- Ø 40.5mm (φ 1.59inch) (ISO40) & Ø 32.2mm (φ 1.27inch) (ISO32) & Ø 25.5 mm (φ 1 inch) (ISO25)
- Ø 25.5 mm (φ 1 inch) (ISO25)

The 4 other knockouts are as follows:

- Ø 22.5mm (φ 0.89inch) (PG16) (UL 1/2") & Ø 16.5mm (φ 0.65inch) (ISO16) (x2)
- Ø 20.7mm (φ 0.81inch) (ISO20 or PG13.5) (x2)

#### Figure 32: PSH052-105 (Except PSH079/105 code 3)




# PSH079 code 3

The terminal box is provided with:

- Ø 50.5mm ( $\phi$  1.98inch) (ISO 50 & UL1"1/2 conduit) hole with possible Ø 63.5mm ( $\phi$  2.5inch) (ISO63 and UL 2"conduit) knockout for power supply
- 2 x Ø 22.5mm (φ 0.89inch) (PG16 and UL 1/2" conduit) knockouts for safety control circuit.





# Figure 33: Wiring connections for PSH079 code 3

Cover holding screws (x3). Torque 2.2 Nm

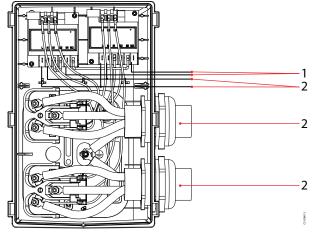
2 Black

- Blue
- 4 Brown
- 5 Sump heater
- 6 M1, M2 Control circuit
- 7 Power supply
- 8 Terminal box
- 9 Power supply



# PSH105 code 3

The terminal box is provided with 2 triple knockouts for power supply, 2 double knockouts and 3 simple knockouts for the safety control circuit.

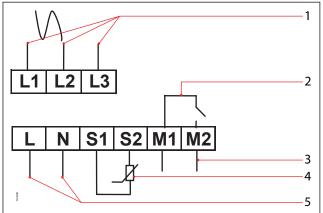

The 2 power supply knockouts accommodate the following diameters:

• Ø 63.5mm (φ 2.5inch) (ISO63 and UL 2"conduit) & Ø 54.2mm (φ 2.13inch) (PG42) & 43.7mm (UL 1"1/4 conduit)

The 5 other knockouts are as follows:

- Ø 22.5mm (φ 0.89inch) (PG16) (UL 1/2") & Ø 16.5mm (φ 0.65 inch) (ISO16)
- Ø 25.5mm (φ 1inch) (ISO25) & 20mm (φ 0.79inch) (ISO20 or PG13.5)
- Ø 22.5mm (φ 0.89inch) (PG16) (UL 1/2")
- Ø 25.5mm (φ 1inch) (ISO25) (x2)

## Figure 34: Wiring connections for PSH105 code 3




- 1 M1, M2 Control circuit
- 2 Power supply

# Motor protection module

The motor protection modules come preinstalled within the terminal box. Phase sequence protection connections and thermistor connections are pre-wired and should not be removed.

The module must be connected to a power supply of the appropriate voltage. The module terminals are 6.3mm (0.25inch) size Faston type.



Phase sequence input
 Internal control contact
 Safety circuit
 Thermistor connection
 Module power

#### Figure 35: Motor protection module



# **Electrical Specifications**

# Motor voltage

Danfoss scroll compressors PSH are available in four different motor voltages as listed below.

#### Table 19: Motor voltage

| Frequency | Motor voltage code | Code 3       | Code 4       | Code 7   |
|-----------|--------------------|--------------|--------------|----------|
| 50 Hz     | Nominal voltage    | -            | 380-415V-3ph | -        |
| 60 Hz     | Nominal voltage    | 208-230V-3ph | 460V-3ph     | 575V-3ph |

#### **O** NOTE:

**Voltage range**: Nominal voltage  $\pm$  10%. The voltage range indicates where the compressor can run in the majority of the application envelope. A boundary voltage supply which accumulates under specific conditions such as high ambiance, high superheat, or map boundary conditions, may lead to a compressor trip.

#### Voltage imbalance

The maximum allowable voltage imbalance is 2%. Voltage imbalance causes high amperage over one or several phases, which in turn leads to overheating and possible motor damage. Voltage imbalance is given by the formula:

| % voltage imbalance = $\frac{ Vavg - V1 - 2  +  Vavg - V1 - 3  +  Vavg - V2 - 3 }{2 \times Vavg} \times 100$ |                                 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Vavg                                                                                                         | Mean voltage of phases 1, 2, 3. |  |  |  |  |
| V1-2                                                                                                         | Voltage between phases 1 and 2. |  |  |  |  |
| V1-3                                                                                                         | Voltage between phases 1 and 3. |  |  |  |  |
| V2-3                                                                                                         | Voltage between phases 2 and 3. |  |  |  |  |

## **IP** rating

The compressor terminal box according to IEC60529 is IP54 for all models when correctly sized IP54 rated cable glands are used.

First numeral, level of protection against contact and foreign objects

5 - Dust protected

Second numeral, level of protection against water

4 - Protection against water splashing

# Terminal box temperature

The temperature inside the terminal box must not exceed 70°C (158°F). Consequently, if the compressor is installed in an enclosure, precautions must be taken to avoid that the temperature around the compressor and in the terminal box would rise too much. A ventilation installation on the enclosure panels may be necessary. If not, the electronic protection module may not operate properly. Any compressor damage related to this will not be covered by Danfoss warranty. In the same manner, cables must be selected in a way that ensures the terminal box temperature does not exceed 70°C (158°F).

# Three phase electrical characteristics

#### Table 20: Motor voltage code 3

| Compressor model | LRA | RLA | Max. operating current | Winding resistance |
|------------------|-----|-----|------------------------|--------------------|
| compressor moder | А   | А   | А                      | Ω                  |
| PSH052           | 455 | 84  | 103                    | 0.153              |
| PSH065           | 600 | 117 | 123                    | 0.105              |
| PSH079           | 735 | 153 | 168                    | 0.045              |
| PSH105           | 761 | 140 | 185                    | 0.10               |



#### Scroll compressors PSH052 to PSH105 | Electrical connections

#### Table 21: Motor voltage code 4

| Compressor model | LRA | RLA | Max. operating current | Winding resistance |
|------------------|-----|-----|------------------------|--------------------|
| compressor moder | А   | А   | А                      | Ω                  |
| PSH052           | 230 | 40  | 43                     | 0.567              |
| PSH065           | 290 | 49  | 56                     | 0.421              |
| PSH079           | 310 | 58  | 69                     | 0.228              |
| PSH105           | 385 | 69  | 91                     | 0.285              |

#### Table 22: Motor voltage code 7

| Compressor model | LRA | RLA | Max. operating current | Winding resistance |
|------------------|-----|-----|------------------------|--------------------|
| compressor moder | А   | А   | А                      | Ω                  |
| PSH052           | 175 | 35  | 35                     | 0.475              |
| PSH065           | 220 | 41  | 42                     | 0.683              |
| PSH079           | 260 | 50  | 57                     | 0.325              |
| PSH105           | 296 | 58  | 72                     | 0.678              |

#### LRA (Locked Rotor Amp)

Locked Rotor Amp value is the higher average current as measured on mechanically blocked compressors tested under nominal voltage. The LRA value can be used as a rough estimation for the starting current. However, in most cases, the real starting current will be lower. A soft starter can be applied to reduce starting current (see section broken link: X019816).

#### **RLA (Rated Load Amperage)**

The RLA values presented are simply calculated by dividing the maximum current before tripping at overload test conditions by 1.4.

#### **MOC (Maximum Operating Current)**

The max operating current is the amperage the compressor will draw when it operates at maximum load of operating envelope within the voltages printed on the nameplate.

MOC can be used as a basis for contactors selection.

#### Winding resistance

Winding resistance is the resistance between phases at 25°C (77°F) (resistance value +/- 7%). Winding resistance is generally low and it requires adapted tools for precise measurement. Use a digital ohm-meter, a "4 wires" method and measure under stabilised ambient temperature. Winding resistance varies strongly with winding temperature. If the compressor is stabilised at a different value than 25°C (77°F), the measured resistance must be corrected using the following formula:

| $R_{tamb} = R_{25^{\circ}C}$ | $(77^{\circ}F) = \frac{a + t_{amb}}{a + t_{25^{\circ}C} (77^{\circ}F)}$ |
|------------------------------|-------------------------------------------------------------------------|
| t <sub>25℃</sub>             | reference temperature = 25°C (77°F)                                     |
| t <sub>amb</sub>             | temperature during measurement °C (°F)                                  |
| R <sub>25℃ (77°F)</sub>      | winding resistance at 25°C (77°F)                                       |
| R <sub>amb</sub>             | winding resistance at tamb                                              |
| а                            | Coefficient a = 234.5                                                   |

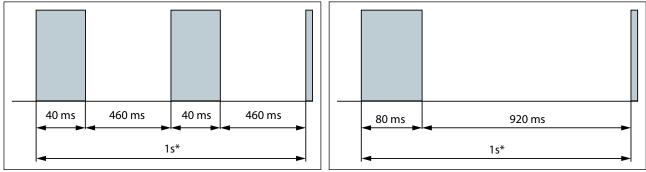
#### Motor protection

#### PSH052-105

Compressor models PSH052-105 are delivered with a pre-installed motor protection module inside the terminal box. This device provides efficient and reliable protection against overheating and overloading as well as phase loss/reversal.

Danfoss

The motor protector comprises a control module and PTC sensors embedded in the motor winding.


The motor temperature is being constantly measured by a PTC thermistor loop connected on S1-S2. If any thermistor exceeds its response temperature, its resistance increases above the trip level (4500  $\Omega$ ) and the output relay then trips – i.e. contacts M1-M2 are open. After cooling to below the response temperature (resistance < 2750  $\Omega$ ), a 5-minute time delay is activated.

After this delay has elapsed, the relay is once again pulled in – i.e. contacts M1-M2 are closed. The time delay may be cancelled by means of resetting the mains (L-N -disconnect) for approximately 5 sec.

A red/green twin LED is visible on the module. A solid green LED denotes a fault free condition. A blinking red LED indicates an identifiable fault condition:

Figure 36: PTC Overheat





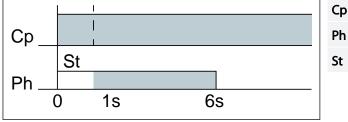
#### \* approx. 1 second

While not compulsory, an additional thermal magnetic motor circuit breaker is still advisable for either alarm or manual reset.

Then it must be set at the Max Operating Current value (MOC) :

- When the motor temperature is too high, then the internal PTC over temp. and module is activated.
- When the current is too high the thermal magnetic motor circuit breaker will trip before the module activate therefore offering possibility of manual reset.

## Phase sequence and reverse rotation protection


#### PSH052-105

Use a phase meter to establish the phase orders and connect line phases L1, L2 and L3 to terminals T1, T2 and T3, respectively.

Compressor models PSH052-105 are delivered with an electronic module which provides protection against phase reversal and phase loss at start-up.

The phase sequencing and phase loss monitoring functions are active during a 5-sec window 1 second after compressor start-up (power on L1-L2-L3).

#### Figure 38: Phase sequence module logic



| Ср | Compressor       |
|----|------------------|
| Ph | Phase monitoring |
| St | start            |
|    |                  |

Should one of these parameters be incorrect, the relay would lock out (contact M1-M2 open). The red LED on the module will show the following blink code:

Danfoss

### Scroll compressors PSH052 to PSH105 | Electrical connections

| 120 ms  | 120 ms | 120 ms | 400 ms |  | - | 500 ms | 500 ms |
|---------|--------|--------|--------|--|---|--------|--------|
| 760 ms* |        |        |        |  |   | 1 s*   |        |

### \* Approximate

The lockout may be cancelled by resetting the power mains (disconnect L-N) for approximately 5 seconds.

For more detailed information see "Instructions for electronic module" AN160986418236.



# Application

## Manage oil in the circuit

### Requirement

A Oil level must be visible or full in the sight glass when the compressor is running and when all compressors of the circuit are stopped.

## System evaluation

| Split type | Single compressor | Manifold compressors |
|------------|-------------------|----------------------|
| Non split  | Test No.1+2       | Test No.1+2+3        |
| Split      | Test No.1+2+4     | Test No.1+2+3+4      |

## Test, criteria and solutions

### Table 24: Manage oil in the circuit - Test, criteria and solutions

| Test No. | Purpose                                                               | Test conditions                                                                                                                                                                                                                                                                                                                                                                                    | Pass criteria                                                                                                                                       | Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Check proper oil<br>return                                            | A<br>Lowest foreseeable evaporation, and<br>highest foreseeable condensation.<br><b>Minimum number of compressor</b> run-<br>ning for 6 hours.<br>For reversible system, perform test in<br>both heating and cooling mode.                                                                                                                                                                         | Oil level must be visible or full in the<br>sight glass when the compressor is run-<br>ning and when all compressors of the<br>circuit are stopped. | <ol> <li>Top-up with oil, generally 3% of the<br/>total system refrigerant charge (in<br/>weight). Above 3% look for poten-<br/>tial oil trap in the system.</li> <li>Integrate a function in control logic<br/>to run all compressors simultane-<br/>ously in order to boost oil return<br/>(for more details see section Con-<br/>trol logic)</li> <li>Oil separator can be added</li> </ol>                                                                                                                                                   |
| 2        | Check proper oil<br>return at low injec-<br>tion flow condi-<br>tions | B<br>Lowest foreseeable evaporation, and<br>lowest foreseeable condensation on the<br>injection area.<br>Minimum number of compressor run-<br>ning for 6 hours.<br>For reversible system, perform test in<br>both heating and cooling mode.                                                                                                                                                        | Oil level must be visible or full in the<br>sight glass when the compressor is run-<br>ning and when all compressors of the<br>circuit are stopped. | <ol> <li>Top-up with oil. Typically, up to 3%<br/>of the total system refrigerant<br/>charge (in weight). Above 3% look<br/>for potential oil trap in the system.</li> <li>Check that injection line is properly<br/>sized and have no possible oil trap<br/>(for more details see section Design<br/>piping).</li> <li>Integrate a function in control logic<br/>to run all compressors simultane-<br/>ously in order to boost oil return<br/>(for more details see section Con-<br/>trol logic)</li> <li>Oil separator can be added</li> </ol> |
| 3        | Check oil balanc-<br>ing                                              | A<br>Lowest foreseeable evaporation and<br>highest foreseeable condensation and<br>nominal capacity condition<br>for tandem 2 compressors running for 6<br>hours, for trio, compressor running fol-<br>low the running sequence:<br>$(1+2+3)2hrs \rightarrow (1+2)2hrs \rightarrow (2+3)2hrs \rightarrow$<br>(1+3)2hrs<br>For reversible system, perform test in<br>both heating and cooling mode. | Oil level must be visible or full in the<br>sight glass when the compressors are<br>running and when all compressors of<br>the circuit are stopped  | <ol> <li>Top-up with oil, generally 3% of the<br/>total system refrigerant charge (in<br/>weight).</li> <li>Check that manifold piping is con-<br/>form to Danfoss requirements.</li> <li>Integrate a function in control logic<br/>to stop manifold periodically in or-<br/>der to balance oil (for more details<br/>see section Control logic)</li> </ol>                                                                                                                                                                                      |
| 4        | Oil return in split<br>systems                                        | Since each installation is unique, test 1<br>and 2 can not fully validate the oil re-<br>turn. Oil level must be checked and ad-<br>justed at commissioning.                                                                                                                                                                                                                                       | Oil level must be visible or full in the<br>sight glass when the compressor is run-<br>ning and when all compressors of the<br>circuit are stopped. | <ol> <li>Pay special attention to "Piping de-<br/>sign"</li> <li>Oil separator is strongly recommen-<br/>ded, espacially in case of part load.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                        |



## Manage sound and vibration

## Sound radiations

Mitigations methods: We can consider two means to reduce compressors sound radiations:

- 1. Acoustic hoods are quick and easy to install and do not increase the overall size of the compressors. Acoustic hoods are available from Danfoss as accessories. Refer to the tables above for sound levels, attenuation and code numbers.
- 2. Use of sound-insulation materials on the inside of unit panels is also an effective mean to reduce sound radiation.

#### **O** NOTE:

During compressor shut down, a short reverse rotation sound is generated. The duration of this sound depends on the pressure difference at shut down and should be less than 3 seconds. This phenomenon has no impact on compressor reliability.

### Gas pulsation

The compressor has been designed and tested to ensure that gas pulsation is optimized for the most commonly encountered air conditioning pressure ratio. Manifolded compressors are equivalents to lagged sources of gas pulsation. Therefore, pulse level can vary during time.

**Mitigations methods:** If an unacceptable level is identified, a discharge muffler with the appropriate resonant volume and mass can be installed.

### **Mitigation Methods**

- 1. To ensure minimum vibrations transmission to the structure, strictly follow Danfoss mounting requirements (mounting feet, rails etc..). For further information on mounting requirements, please refer to section Design compressor mounting.
- 2. Ensure that there is no direct contact (without insulation) between vibrating components and structure.
- 3. To avoid resonance phenomenon, pipings and frame must have natural frequencies as far as possible from running frequencies(50 or 60 Hz). Solutions to change natural frequencies are to work on structure stiffness and mass (brackets, metal sheet thickness or shape...)

## **Manage Operating envelope**

The Operating envelope data for PSH scroll compressors guarantees reliable operations of the compressor for steady-state operation.

Steady-state operation envelope is valid for a suction superheat within 5K range at nominal Voltage.

### High and low pressure protection

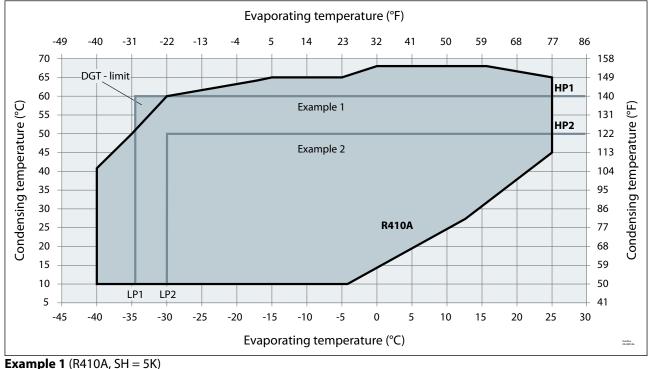
Low-pressure (LP) and high-pressure (HP) safety switches must never be bypassed nor delayed and must stop all the compressors.

LP switch auto restart must be limited to 5 times within 12 hours.

HP safety switch must be reset manually.

Depending on application operating envelope, you must define HP and LP limits within operating envelope and pressure setting table above.

### Discharge temperature protection


PSH052-105 include an integrated discharge temperature protection. Excessive discharge temperature will result in tripping of electronic module output relay.

This protection, effective for suction superheat above 5K (9°F), should be considered as a compressor safety device and its purpose is not to ensure operation map control.



In case of basic map control by pressure switches that can not ensure totally that the compressor will remain in its operating envelope, an additional external discharge protection is required. (see below Figure 41: Discharge temperature protection examples)

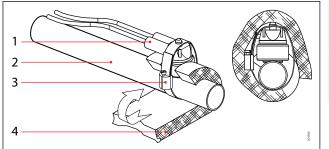




LP switch setting: LP1 = 1.3 bar (g) (-34°C), HP switch setting: HP1 =37 bar (g) (60°C) Risk of operation beyond the application envelope. DGT protection required.

**Example 2** (R410A, SH = 5K)

LP switch setting: LP2 = 1.7 bar (g) (-30°C), HP switch setting: HP2 = 30 bar (g) (50°C) No risk of operation beyond the application envelope. No DGT protection required.


This external protection device can be a thermostat or a temperature sensor. The discharge gas temperature protection must trip the power supply when it reaches the setting point to protect the compressor from overheating.

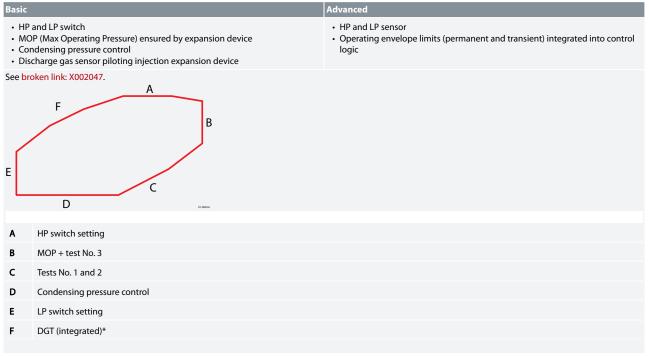
The discharge gas protection should be set to open at a maximum discharge gas temperature of 135°C(275°F).

The discharge gas thermostat must be attached to the discharge line within 40mm (1.57 inch) from the compressor discharge port and must be thermally insulated and tightly fixed on the pipe (see Figure 42: Discharge Gas Temperature protection (DGT))

1






- Thermostat or temperature sensor
- 2 Discharge line
- 3 Bracket
- 4 Insulation



## System evaluation

HP and LP must be monitored to respect operating envelope limitations. We consider two types of operating envelope management:

#### Table 25: Operating envelope management



#### **O** NOTE:

\*PSH052-105 compressor includes an integrated Discharge Gas Temperature protection (DGT). Excessive discharge temperature will result in tripping of electronic module output relay.

## Manage superheat

### Requirement

In any conditions the expansion device must ensure a suction superheat within 5 – 30 K.

### Manage superheat

During normal operation, refrigerant enters the compressor as a superheated vapor. Liquid flood back occurs when a part of the refrigerant entering the compressor is still in liquid state.

Liquid flood back can cause oil dilution and, in extreme situations lead to liquid slugging that can damage the compressor.

### System evaluation

Use the table in relation with the application to quickly evaluate the potential tests to perform.

| Tests to perform<br>Liquid flood back test |
|--------------------------------------------|
| Liquid flood back test<br>Defrost test     |

## Test, criteria and solutions

Suction accumulator must be added in system

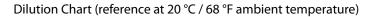


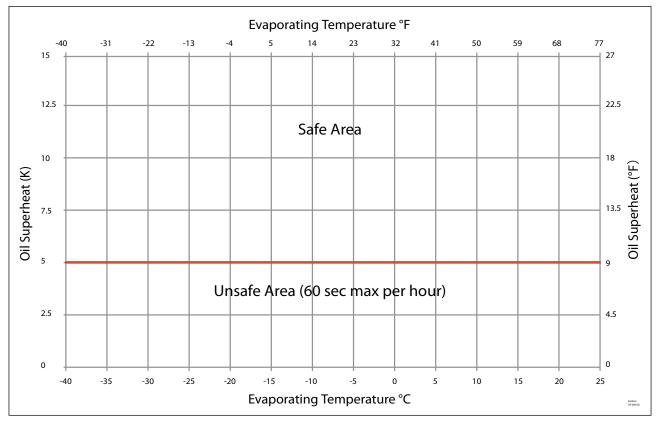
### Scroll compressors PSH052 to PSH105 | Application

| Test                      | Purpose                                                  | Test condition                                                                                                                                                    | Pass criteria                                                                                                              | Solutions                                                                                                                                                                                                          |
|---------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Liquid flood<br>back test | Steady-state                                             | A<br>Liquid flood back testing must be carried out under expansion<br>valve threshold operating conditions: a high pressure ratio and<br>minimum evaporator load. | Suction superheat >5 K                                                                                                     | <ul> <li>Check expansion valve selection and setting.</li> <li>For Thermostatic expansion valve (TXV) check bulb position</li> <li>For Electronic expansion valve (EXV) check measurement chain and PID</li> </ul> |
|                           | Transient                                                | Tests must be carried out with most unfavorable conditions :<br>• fan staging<br>• compressor staging<br>•etc.                                                    | Oil superheat shall not be more<br>than 30 sec below the safe limit<br>defined in the Dilution Chart<br>(see graph below). |                                                                                                                                                                                                                    |
| Defrost test              | Check liquid<br>floodback dur-<br>ing defrost cy-<br>cle | Defrost test must be carried out in the most unfavorable conditions (at 0 $^\circ C$ (32 $^\circ F)$ evaporating temperature).                                    | Oil superheat shall not be more<br>than 30 sec below the safe limit<br>defined in the Dilution Chart<br>(see graph below). | In reversible systems, the de-<br>frost logic can be worked out to<br>limit liquid floodback effect (for<br>more details see Control logic).                                                                       |

## Placing oil temperature sensor

Oil temperature sensor must be placed on the bottom of the baseplate. Some thermal paste shall be used to improve the conductivity. The sensor must also be correctly thermally insulated from the ambiance.


The Oil superheat is defined as: (Oil temperature - Evaporating temperature)


### Figure 43: Placing oil temperature sensor

|          | 1 | Oil temperature sensor must be placed on the bottom of the baseplate. |
|----------|---|-----------------------------------------------------------------------|
|          |   |                                                                       |
|          |   |                                                                       |
|          |   |                                                                       |
|          |   |                                                                       |
|          |   |                                                                       |
|          |   |                                                                       |
| <b>@</b> |   |                                                                       |
| 0        |   |                                                                       |
|          |   |                                                                       |
|          |   |                                                                       |
|          |   |                                                                       |

Danfoss

## Dilution Chart - PSH052-105 R410A/R454B





## Manage off cycle migration

Off -cycle refrigerant migration happens:

- when the compressor is located at the coldest part of the installation, refrigerant vapor condenses in the compressor.
- or directly in liquid-phase by gravity or pressure difference. When the compressor restarts, the refrigerant diluted in the oil, or stored in evaporator, generates poor lubrication conditions, and may reduce bearings life time. In extreme situations, this leads to liquid slugging that can damage the compressor scroll set.

## Requirement

- Compressor can tolerate occasional flooded start, but it should remain exceptional situation and unit design must prevent that this situation happen at each start.
- Right after start, liquid refrigerant must not flow massively to compressor
- The charge limit is a threshold beyond some protective measures must be taken to limit risk of liquid slugging and extreme dilution at start.
- Recommend to install an additional solenoid valve on the injection line to prevent the refrigerant coming back directly into the compressor scroll set during off-cycles.

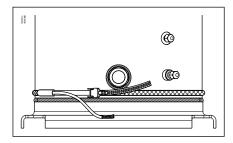
## System evaluation

Use the table below in relation with the system charge and the application to quickly define necessary safeties to implement.



#### Table 26: System charge

| BELOW charge limit                                                                                                                                                                                                        | ABOVE charge limit |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
| Ensure tightness between condenser & evaporator when system is OFF                                                                                                                                                        |                    |  |  |  |  |
| <ul> <li>Thermostatic expansion Valve (TXV), Liquid Line Solenoid Valve LLSV strongly recommended</li> <li>Electronic expansion valve (EXV) must close when system stop including in power shut down situation</li> </ul> |                    |  |  |  |  |
| No test or additional safeties required                                                                                                                                                                                   | Crankcase heater   |  |  |  |  |


#### **Crankcase heater**

The crankcase heaters are designed to protect the compressor against off-cycle migration of refrigerant.

For PSH052-105 the use of a 75W belt heater is mandatory, if the ambient temperature is between -5°C and -23°C. For ambient temperature between -23°C and -28°C a 130W belt heater must be used. For ambient temperature below -28°C two pieces 130W belt heater must be used.

#### Table 27: Belt sump selection principle

| T ambiance | Belt Sump Heater |
|------------|------------------|
| -23~-5     | 75 W SSH         |
| -28~-23    | 130 W SSH        |
| -33~-28    | 130W+130W SSH    |



The heater must be turned on whenever all the compressors are off. Crankcase heater accessories are available from Danfoss (see section "Accessories").

#### Liquid line solenoid valve (LLSV)

A Liquid line solenoid valve (LLSV) is used to isolate the liquid charge on the condenser side, thereby preventing against charge transfer to the compressor during off -cycles. The quantity of refrigerant on the low-pressure side of the system can be further reduced by using a pump down cycle in association with the LLSV.

#### Pump-down cycle

By decreasing pressure in the sump, pump down system:

- evacuates refrigerant from oil
- set the sump saturating pressure much lower than ambiance temperature and due to that, avoid refrigerant condensation in the compressor.

Pump-down must be set higher than the minimum low pressure safety switch setting. For more details on pumpdown cycle see section Control logic.

#### **Charge limits**

#### Table 28: Charge limits for single models

| Models     | Refrigerant charge limit |     |  |  |
|------------|--------------------------|-----|--|--|
| models     | kg                       | lbs |  |  |
| PSH052-065 | 13.5                     | 30  |  |  |
| PSH079-105 | 17                       | 37  |  |  |

#### Table 29: Charge limits for Tandem models

| Model   | Composition | Refrigerant charge limit |      |  |
|---------|-------------|--------------------------|------|--|
| Model   |             | kg                       | lbs  |  |
| PSH104E | 2xPSH052    | 17.6                     | 38.8 |  |
| PSH130E | 2xPSH065    | 17.6                     | 38.8 |  |
| PSH158E | 2xPSH079    | 22.1                     | 48.7 |  |

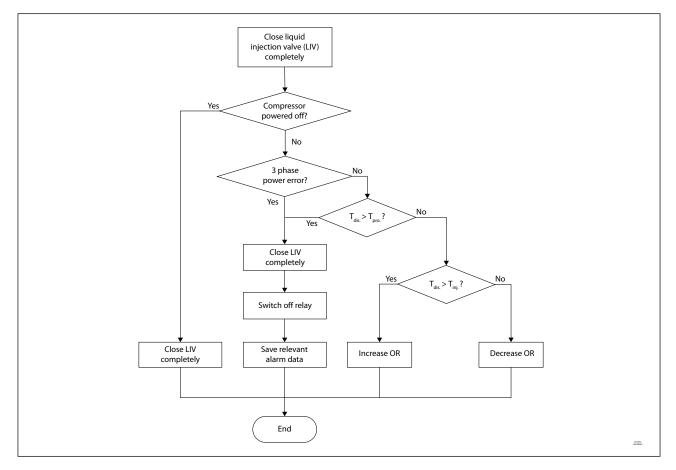


### Scroll compressors PSH052 to PSH105 | Application

| Model   | Composition   | Refrigerant charge limit |      |  |
|---------|---------------|--------------------------|------|--|
|         |               | kg                       | lbs  |  |
| PSH170U | PSH65+PSH105  | 19.8                     | 43.7 |  |
| PSH184U | PSH079+PSH105 | 22.1                     | 48.7 |  |
| PSH210E | 2xPSH105      | 22.1                     | 48.7 |  |

#### Table 30: Charge limits for Trio models

| Model   | Composition          | Refrigerant charge limit |      |  |
|---------|----------------------|--------------------------|------|--|
|         | composition          | kg                       | lbs  |  |
| PSH237T | 3xPSH079             | 28.8                     | 63.5 |  |
| PSH263T | PSH105+PSH079+PSH079 | 28.8                     | 63.5 |  |
| PSH289T | PSH105+PSH105+PSH079 | 28.8                     | 63.5 |  |
| PSH315T | 3xPSH105             | 28.8                     | 63.5 |  |


## Manage injection

PSH compressors can be used on single configuration but also in tandem and trio manifold.

This paragraph focuses on single and tandem configurations. For trios configurations, please contact Danfoss.

### Liquid injection only

PSH compressors can be used with only with liquid injection (see "Introduction" for a general presentation). On this configuration, the compressor is running without injection (see "Operating envelope data" - LI/Non injection operating map). A liquid injection occurs to extend the map and control the DGT. To do so, the architecture of the unit and the control logic have to manage the flow of liquid injected following the flowchart below.



**OR** Opening ratio of injection valve

T<sub>dis</sub> Compressor discharge temperature

T<sub>pro.</sub> Discharge temperature protection setpoint. It should be 135°C

T<sub>ini.</sub> The advice discharge temperature control point is 121°C

#### **O** NOTE:

To avoid short cycling of the Liquid Injection valve, an hysteresis of [+2K/-2K] on the discharge temperature control point can be applied. It can be customizable on a range [+5K/-5K] by step of 1K.

For reliability reasons, Danfoss recommend to control each compressor. This means that an individual DGT and an LIV per compressor is recommended.

### DGT criteria

The temperature sensor should be placed in contact on the discharge pipe at 40mm from the connection to the compressor. Thermal paste between the sensor and the pipe combined to a surrounded thermal insulation improve the measurement of this temperature.

The table below presents a pre-selection of LIV, DGT sensor and controller for the different configurations of PSH using R454B. the components selected based on dedicated conditions, they can cover most of the applications. customer should always do their qualification based on different system. If any question Please contact Danfoss technical support.

| Model        |                   | LIV                         | DGT temperature sensor          | Controller                  |
|--------------|-------------------|-----------------------------|---------------------------------|-----------------------------|
|              | PSH052            |                             |                                 |                             |
|              | PSH065            |                             |                                 |                             |
|              | PSH079            |                             | AKS sensor (or other<br>PT1000) |                             |
| 50 and 60 Hz | PSH105            | ETS5M13 (released Q2/2025)  |                                 | EKE100 1V (release Q4/2024) |
| 50 and 60 Hz | PSH104 (2*PSH052) | E1551W15 (Teleased Q2/2025) |                                 |                             |
|              | PSH130 (2*PSH065) |                             |                                 |                             |
|              | PSH158 (2*PSH079) |                             |                                 |                             |
|              | PSH210 (2*PSH105) |                             |                                 |                             |

### Vapor + Wet injection

To improve the performances, PSH compressors can use Vapor + Wet injection (see "Introduction" for a general presentation). A continuous 5K superheated vapor injection occurs on the related map (see "Operating envelope data" - VI operating map). When the DGT starts to increase due to the operating conditions, the superheat of the vapor injection shall be decreased to keep the DGT between 121°C and 135°C. A dedicated expansion valve, an Intermediate Exchanger and a solenoid valve per compressor (EXV + IE + Sol v on Figure 5 and 6) need to be integrated on the refrigerant circuit.

The table below presents a pre-selection of EXV, IE and Sol v for the different configurations of PSH using R454B.

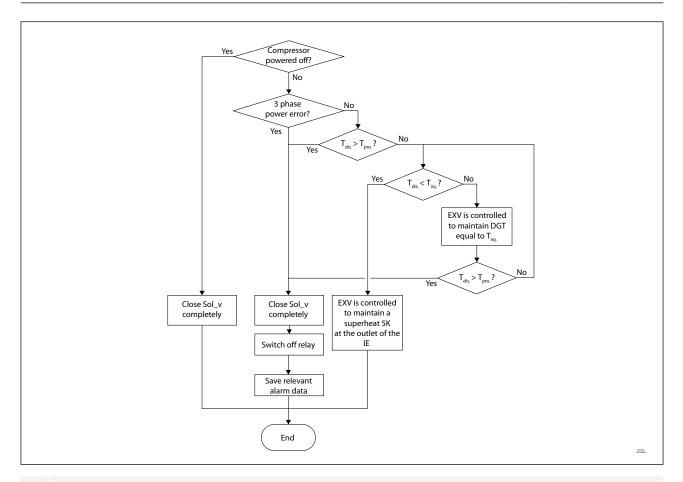
Note: these selections allow to cover Vapor + Wet injection for hydronic Heat pumps for evaporating temperature up to 15°C and pressure ratio higher than 2.

For more specific applications or for optimized selection, please contact Danfoss.



### Scroll compressors PSH052 to PSH105 | Application

|       | Model                  | Architecture | Injection EXV | IE         | Injection and<br>DGTtemperature<br>sensor | Sol v(1 per comp.) |
|-------|------------------------|--------------|---------------|------------|-------------------------------------------|--------------------|
|       | PSH052                 | Upstream     | ETS5M17       | C55L-EU-10 |                                           | EVR10v2            |
|       | P3H052                 | Downstream   | ET35IWIT7     | C55L-EU-12 |                                           | EVRIOVZ            |
|       | PSH065                 | Upstream     | ETS5M20       | C55L-EU-12 |                                           | EVR10v2            |
|       | F3H003                 | Downstream   | ET35IWI20     | C55L-EU-14 |                                           | LVRIOVZ            |
|       | PSH079                 | Upstream     | ETS5M25       | C55L-EU-16 |                                           | EVR10v2            |
|       | 1 51107 9              | Downstream   | LIJJWZJ       | C55L-EU-18 |                                           | LVIIIOVZ           |
|       | PSH105                 | Upstream     | ETS5M25       | C55L-EU-20 |                                           | EVR15v2            |
| 50 Hz | 1511105                | Downstream   | ETS5M30       | C55L-EU-22 |                                           | LVIIISVZ           |
| 50112 | PSH104 (2*PSH052)      | Upstream     | ETS5M25       | C55L-EU-18 |                                           | EVR10v2            |
|       | 1 51110+ (2 1 511052)  | Downstream   | LIJJWZJ       | C55L-EU-20 |                                           | LVIIIOVZ           |
|       | PSH130 (2*PSH065)      | Upstream     | ETS5M30       | C55L-EU-22 |                                           | EVR10v2            |
|       | 1311130 (2 1311003)    | Downstream   | LISSWIGG      | C55L-EU-24 |                                           | EVRIOVZ            |
|       | PSH160 (2*PSH079)      | Upstream     | ETS5M40       | C55L-EU-24 | AKS sensor (or other<br>PT1000)           | EVR10v2            |
|       |                        | Downstream   | LIJJMHO       | C55L-EU-26 |                                           | LVIIIOVZ           |
|       | PSH210 (2*PSH105)      | Upstream     | ETS8M40S-10   | C55L-EU-38 |                                           | EVR15v2            |
|       |                        | Downstream   | 210011100 10  | C55L-EU-40 |                                           | LVIIIJVZ           |
|       | PSH052                 | Upstream     | ETS5M20       | C55L-EU-12 |                                           | EVR10v2            |
|       | 1311032                | Downstream   | 21551120      | C55L-EU-14 |                                           | LUIIIOVZ           |
|       | PSH065                 | Upstream     | ETS5M20       | C55L-EU-14 |                                           | EVR10v2            |
|       |                        | Downstream   | ETS5M24       | C55L-EU-16 |                                           | LUNIOVZ            |
|       | PSH079                 | Upstream     | ETS5M25       | C55L-EU-18 |                                           | EVR10v2            |
|       | 1511075                | Downstream   | ETS5M30       | C55L-EU-20 |                                           | LVIIIOVZ           |
|       | PSH105                 | Upstream     | ETS5M30       | C55L-EU-22 |                                           | EVR15v2            |
| 60 Hz | 1311103                | Downstream   | LISSMOO       | C55L-EU-24 |                                           | LUNIOVZ            |
| 00112 | PSH104 (2*PSH052)      | Upstream     | ETS5M25       | C55L-EU-22 |                                           | EVR10v2            |
|       | 1001(2.10002)          | Downstream   | 210011120     | C55L-EU-24 |                                           | 2                  |
|       | PSH130 (2*PSH065)      | Upstream     | ETS5M30       | C55L-EU-24 |                                           | EVR10v2            |
|       | , 511150 (2 1 511055)  | Downstream   | 2.00.00       | C55L-EU-26 |                                           | 2                  |
|       | PSH160 (2*PSH079)      | Upstream     | ETS5M40       | C55L-EU-26 |                                           | EVR10v2            |
|       | 7 STT 60 (2 T ST107 9) | Downstream   | ETS8M40S-10   | C55L-EU-28 |                                           | 200002             |
|       | PSH210 (2*PSH105)      | Upstream     | ETS5M40       | C55L-EU-44 |                                           | EVR15v2            |
|       | 7311210 (21311103)     | Downstream   | ETS8M40S-10   | C55L-EU-46 |                                           | 200002             |


EXV Electronic Expansion Valve (ETS 5M will release in Q2/2025)

### IE Intermediate Exchanger

Sol v Solenoid Valve

In the VI+WI injection configuration, the architecture of the unit and the control logic must manage the flow of liquid injected following the flowchart below.





T<sub>dis</sub> Compressor discharge temperature

T<sub>pro.</sub> Discharge temperature protection setpoint. It should be 135°C

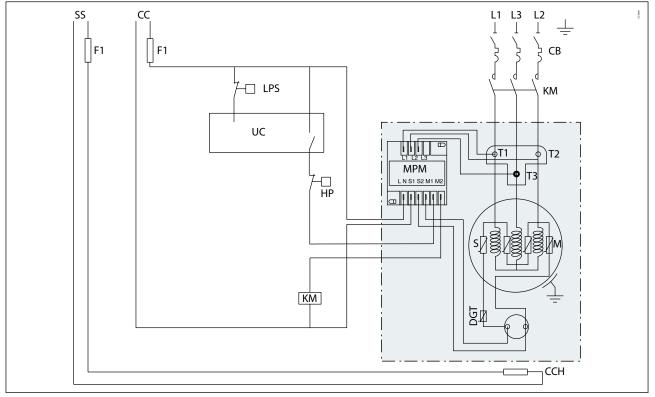
**T**<sub>ini.</sub> The advice discharge temperature control point is 121°C

#### **O** NOTE:

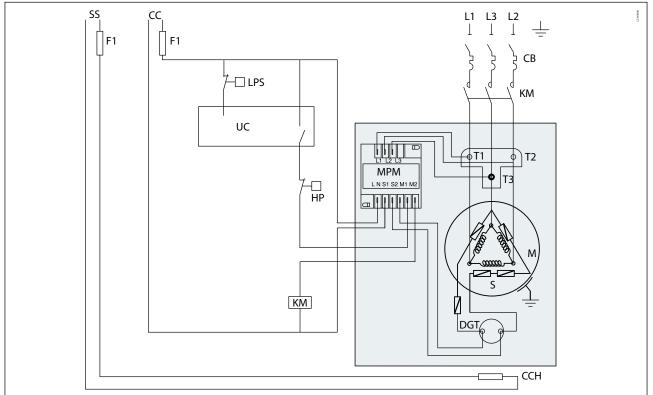
To avoid short cycling of the Liquid Injection valve, an hysteresis of [+2K/-2K] on the discharge temperature control point can be applied. It can be customizable on a range [+5K/-5K] by step of 1K.

This control logic of the VI+WI injection will be embedded in EKE100 2V using the "DGT control" mode. (released Q4/2024)

## Power supply and electrical protection

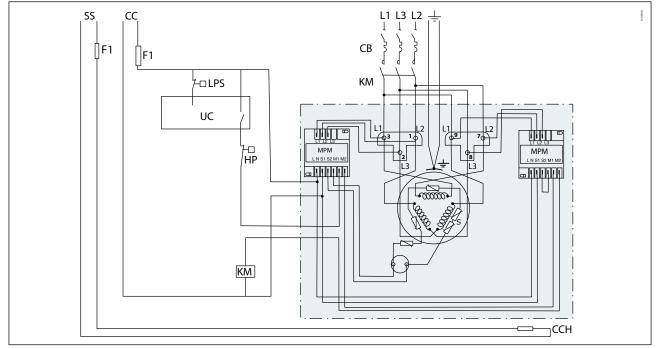

### Wiring information Requirements

- Protect the compressor from short circuit and overcurrent by a thermal magnetic motor circuit breaker set to Max. operating current or lower (see table in section Three phase electrical characteristics).
- Compressor models PSH052-105 are delivered with a pre-installed motor protection module inside the terminal box that must be powered on.
- HP safety switch and electronic module relay output (M1-M2) must be wired in the safety chain. Other safety devices such as LP can be either hardware or software managed.
- Provide separate electrical supply for the heaters so that they remain energized even when the machine is out of service (e.g. seasonal shutdown).


The wiring diagrams below are examples for a safe and reliable compressor wiring:



### Figure 44: Compressor model PSH052-079




### Figure 45: Compressor model PSH105





#### Figure 46: Compressor model PSH105 code 3



| СВ  | Thermal magnetic motor circuit breaker                 | м   | Compressor motor                                        |
|-----|--------------------------------------------------------|-----|---------------------------------------------------------|
| сс  | Control circuit                                        | MPM | Motor Protection Module                                 |
| DGT | Discharge gas thermistor (embedded in com-<br>pressor) | S   | Thermistor chain (motor and discharge tem-<br>perature) |
| F1  | Fuses                                                  | SS  | Seprate supply                                          |
| HP  | High pressure safety switch                            | ССН | Crankcase heater                                        |
| КМ  | Compressor contactor                                   | UC  | Unit Controller                                         |
| LPS | Safety pressure switch                                 |     |                                                         |

## Soft starts

Soft starters are designed to reduce the starting current of 3-phase AC motors. Soft starters can be used on PSH compressor but, in order to ensure proper lubrication of compressor parts, the settings must ensure that the compressor start-up time is always less than 0.5 seconds.

Ramp-down must be set to minimum to ensure proper discharge valve closing.

A In case of use with R454B make sure that the softstarter selected is compatible with A2L refrigerants.

## **Control logic**

## Safety control logic requirements

|                                           | Tripping conditions                           |      | Re-start conditions       |                                                                      |  |  |
|-------------------------------------------|-----------------------------------------------|------|---------------------------|----------------------------------------------------------------------|--|--|
| Safeties                                  | Value                                         | Time | Value                     | Time                                                                 |  |  |
| HP safety switch                          | See Pressure settings ta-                     |      | mai. Switch closed again. | Manual reset                                                         |  |  |
| LP safety switch                          | ble from section Manage<br>operating envelope |      |                           | Maximum 5 auto reset during a period of 12 hours, then manual reset. |  |  |
| Electronic module (Motor protection, DGT) | Contact M1-M2 opened                          |      |                           |                                                                      |  |  |



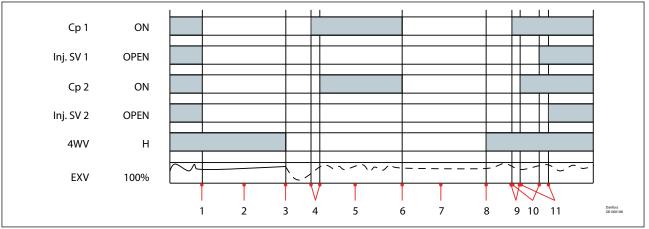
## Cycle rate limit requirements

Danfoss requires a minimum compressor running time of 2 minutes to ensure proper oil return and sufficient motor cooling.

Additionally, compressor must not exceed 12 starts per hour. 12 starts per hour must not be considered as an average, this is the maximum number of starts acceptable to keep a good regulation accuracy during low load.

### Oil management logic recommendations

In some cases, oil management can be enhanced by control logic:


- If oil return test failed, a function can be integrated in control logic to run all compressors simultaneously during 2 minutes every hour in order to boost oil return. Time and delay can be fine-tuned by oil return test N°1 in section Manage oil in the circuit. During oil boost, pay special attention to superheat management to avoid liquid flood back.
- In trio system, after running long time in same state with 2 or 3 compressors, (1+2+3) or (1+2), (2+3) or (3+1), oil unbalance may appears. A function can be implemented in control logic to stop all compressors during one minute every two hours in order to balance oil. Time and sequence can be fine-tuned during Oil balancing test in section Manage oil in the circuit.

### Defrost logic recommendations / Reversible systems

In reversible systems, the defrost logic can be worked out to limit liquid flood back effect by:

- 1. Running full load during defrost to share liquid refrigerant between all compressors.
- 2. Reducing refrigerant flooding to compressor by transferring liquid refrigerant from one exchanger to the other before reversing valve thanks to pressures.

The following defrost logic combines both advantages:



#### Figure 47: Defrost logic advantages



| Cp 1   | Compressor 1                                                                                                                           |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|
| Cp 2   | Compressor 2                                                                                                                           |
| ON     | On                                                                                                                                     |
| н      | Heating                                                                                                                                |
| lnj.SV | Injection solenoid valve                                                                                                               |
| OPEN   | Open                                                                                                                                   |
| 1      | Defrost start. Stop all compressors                                                                                                    |
| 2      | 4 Way Valve (4WV) stays in heating mode. EXV opened to transfer liquid from outdoor to indoor exchanger thanks to pressure difference. |
| 3      | When pressures are almost balanced <sup>(1)</sup> , change 4WV to cooling mode.                                                        |
| 4      | Start Cp1 and Cp 2 with 0.5 seconds delay between 2 successive starts                                                                  |
| 5      | Defrost                                                                                                                                |
| 6      | Defrost end. Stop all compressors                                                                                                      |
| 7      | 4 WV stays in cooling mode. EXV opened to transfer liquid from indoor to outdoor exchanger thanks to pressure difference               |
| 8      | When pressures are almost balanced <sup>(1)</sup> , change 4WV to heating mode.                                                        |
| 9      | Start Cp1 and Cp2 with a minimum delay of 0.5 s between two successive starts                                                          |
| 10     | Open vapor injection valve 1 with at least 5 seconds delay than compressor 1 start-up                                                  |
| 11     | Open vapor injection valve 2 with at least 5 seconds delay than compressor 2 start-up                                                  |
|        |                                                                                                                                        |

A In reversible systems, to ensure compressor reliability, the 4-way valve must not reverse when the compressor is stopped due to heating or cooling demand (stop on thermostat).

<sup>(1)</sup> EXV Opening degree and time have to be set to keep a minimum pressure for 4 way valve moving. In any case, defrost logics must respect requirements and tests described in sections Manage superheat and Operating envelope data.

## Pump-down logic recommendations

Pump down is initiated prior to shutting down the last compressor on the circuit by de-energizing a liquid line solenoid valve or closing electronic expansion valve. When suction pressure reached the cut-out pressure, compressor is stopped, and liquid solenoid valve or electronic expansion valve remains closed. The injection line should keep on working in case of the high discharge temperature during the pump down cycle.

Two types of pump-down exist:

- One shot pump down (preferred): when last compressor of the circuit stops, suction pressure is decreased 1.5bar (22psi) below nominal evaporating pressure with the minimum low pressure safety switch setting. Even if suction pressure increases again, the compressor will not restart.
- Continuous pump-down: traditional pump-down, Compressor restarts automatically when suction pressure increases up to 4 cycles maximum.

#### Non Return Valve (NRV)

PSH052-105 compressors integrate tight internal non return valve (INRV), therefore no external Non Return Valve (NRV) is needed.

## **Reduce moisture in the system**

Excessive air and moisture

- Can increase condensing pressure and cause high discharge temperatures.
- Can create acid giving rise to copper platting.
- Can destroy the lubricating properties of the oil.

All these phenomena can reduce service life and cause mechanical and electrical compressor failure.

### Requirements

- The compressors are delivered with < 100ppm moisture level.
- At the time of commissioning, system moisture content may be up to 100ppm.
- During operation, the filter drier must reduce this to a level between 20 and 50ppm.

### Solutions

To achieve this requirement, a properly sized and type of drier is required. Important selection criteria's include:

- · driers water content capacity,
- system refrigeration capacity,
- system refrigerant charge.

For new installations of compressors with polyolester oil, Danfoss recommends using the Danfoss DML (100% molecular sieve) solid core filter drier.

### Assembly line procedure

#### Compressor storage

Store the compressor not exposed to rain, corrosive or flammable atmosphere between -35°C (-31°F) and 70°C (158°F) when charged with nitrogen and between -35°C (-31°F) and Ts max value (see section Pressure equipment directive 2014/68/EU) when charged with refrigerant.

## Compressor holding charge

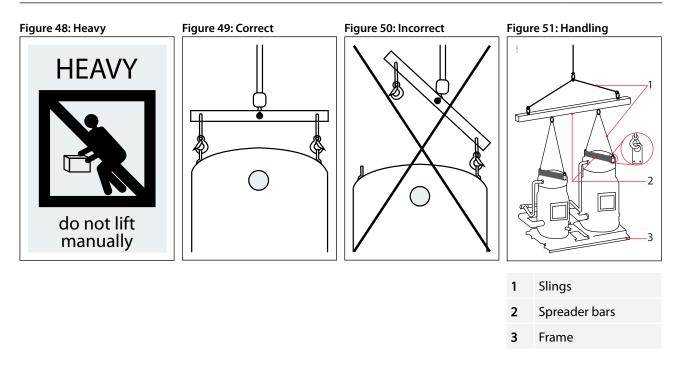
Each compressor is shipped with a nominal dry nitrogen holding charge between 0.3bar (4 psi) and 0.7bar (10psi) and is sealed with elastomer plugs.

Respect the following sequence to avoid discharge check valve gets stuck in open position:

- Remove the suction plug first
- Remove the discharge plug afterwards
- Remove the injection port plug at last

An opened compressor must not be exposed to air for more than 20 minutes to avoid moisture is captured by the POE oil.

### Handling


A Each Danfoss PSH scroll compressor is equipped with two lift rings on the top shell.

- Always use both these rings when lifting the compressor.
- Use lifting equipment rated and certified for the weight of the compressor or compressor assembly.
- A spreader bar rated for the weight of the compressor is highly recommended to ensure a better load distribution.
- The use of lifting hooks closed with a clasp is recommended.
- For tandem and trio assemblies, use a spreader bar and all compressor rings as shown in picture below.
- Never use the lift rings on the compressor to lift the full unit.

Maintain the compressor in an upright position during all handling manoeuvres (maximum of 15° from vertical).



### Scroll compressors PSH052 to PSH105 | Application



# Piping assembly

Good practices for piping assembly is a pre-requisite to ensure compressor life time (system cleanliness, brazing procedure etc.)

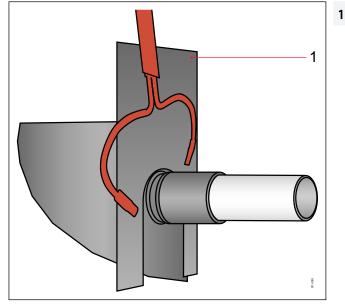
#### Table 31: System cleanliness

| Circuit contamination possible cause: | Requirement:                                                                                                                                                             |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brazing and welding oxides            | During brazing, flow nitrogen through the system.                                                                                                                        |
| Particles and burrs                   | Remove any particles and burrs generated by tube cutting and hole drilling.                                                                                              |
| Moisture and air                      | Use only clean and dehydrated refrigeration grade copper tubing.<br>Opened compressor must not be exposed to air more than 20 minutes to avoid moisture captured by oil. |

Brazing procedure:

- Brazing operations must be performed by qualified personnel.
- Make sure that no electrical wiring is connected to the compressor.
- To prevent compressor shell and electrical box overheating, use a heat shield and/or a heat-absorbent compound.
- Clean up connections with degreasing agent
- Flow nitrogen through the compressor.
- It is recommended to use double-tipped torch using acetylene to ensure a uniform heating of connection.
- For discharge connections brazing time should be less than 2 minutes to avoid NRVI damages if any.
- To enhance the resistance to rust, a varnish on the connection is recommended.

PSH compressors connectors are made of steel copper coated, which benefit to protect against corrosion and facilitate adhesion during brazing operation.


As per standards practice in the refrigeration industry, Danfoss Commercial Compressor recommend to use of silver cadmium free solder alloy and flux (added or flux coated rods). The significant silver content in these brazing alloy will help the brazing operation, providing an excellent fluidity and a limited heating temperature. It will bring also a good resistance to corrosion, a proper elongation compatible with system vibration, and good behavior under thermal variation improving the strength of connection and limiting fractures and refrigerant leaks. (Crucial with A2L refrigerants) A typical content of 34% Ag (Silver) is recommended by Danfoss.

The use of self-flux alloys (as phosphorous alloys) is not recommended by Danfoss. This type of brazing require a higher working temperature, that may overheat the connectors, damaging the thin layer of copper, resulting in phosphides creation and joint zone embrittlement.

For more detailed information see "Brazing technique for compressors connectors" AP192186420580.



#### Figure 52: Brazing procedure



Refore eventual un-brazing of the compressor or any system component, the refrigerant charge must be removed and the installation vacuumed (especially with A2L refrigerants).

Heat shield

### System pressure test and leak detection

A The compressor has been strength tested and leak proof tested (<3g/year) at the factory. For system tests:

- Always use an inert gas such as Nitrogen or Helium.
- Pressurize the system on HP side first then LP side.
- Do not exceed the following pressures indicated in table below

#### Table 32: System pressure test and leak detection

| Maximum compressor test pressures               | PSH052-105                                                                             |
|-------------------------------------------------|----------------------------------------------------------------------------------------|
| Maximum compressor test pressure high side (HP) | 53.6 bar (g) (777 psig)<br>HP-LP<37 bar (537 psi)                                      |
| Maximum compressor test pressure low side (LP)  | 34.3bar (g) (497psig)<br>LP – HP <5bar (73psi)<br>Maximum speed 4.8bar/s (70psi/s) (1) |

<sup>(1)</sup> The maximum pressurizing speed must be respected to ensure pressure equalization between LP and HP side over scroll elements.

## Vacuum evacuation and moisture removal

#### Requirements:

- Never use the compressor to evacuate the system.
- Connect a vacuum pump to both the LP and HP sides.
- Evacuate the system to a pressure of 500 µm Hg (0.67 mbar/0.02 in.Hg) absolute.

#### **Recommendations:**

- Energized heaters improve moisture removal.
- Alternate vacuum phases and break vacuum with Nitrogen to improve moisture removal.

For more detailed information see "Vacuum pump-down and dehydration procedure" TI-026-0302.

### Refrigerant charging

lnitial charge:



- For the initial charge, the compressor must not run.
- Charge refrigerant as close as possible to the nominal system charge.
- This initial charging operation must be done in liquid phase between the condenser outlet and the filter drier.

If needed, a complement of charge can be done before evaporator, in liquid phase while compressor is running by slowly throttling liquid in.

Never bypass safety low pressure switch.

For more detailed information see "Recommended refrigerant system charging practice" AP000086421422.

## Dielectric strength and insulation resistance tests

Several tests have been performed on each compressor at the factory between each phase and ground.

- Dielectric strength test is done with a high potential voltage (hi-pot) of 2Un +1000V AC at least, and leakage current must be less than 5 mA.
- Insulation resistance is measured with a 500 V DC megohm tester and must be higher than 1 megohm.

#### **Recommendations:**

- Additional dielectric test is not recommended as it may reduce motor lifetime. Nevertheless, if such as test is necessary, it must be performed at a lower voltage.
- Insulation resistance test can be done.
- The presence of refrigerant around the motor windings will result in lower resistance values to ground and higher leakage current readings. Such readings do not indicate a faulty compressor. To prevent this, the system can be first operated briefly to distribute refrigerant.

A Do not use a megohm meter nor apply power to the compressor while it is under vacuum as this may cause internal damage.

## Commissioning

### **Preliminary check**

Check electrical power supply:

• Phase order: Reverse rotation is obvious if the compressor do not build up pressure and sound level is abnormal high.

The PSH052-105 compressors equipped with an electronic module, reverse rotation will be automatically detected. For more details refer to section Motor protection.

• Voltage and voltage unbalance within tolerance: For more details refer to section Motor voltage.

### Initial start-up

- Crankcase heaters must be energized at least 6 hours in advance to remove refrigerant.
- A quicker start-up is possible by "jogging" the compressor to evacuate refrigerant. Start the compressor for 1 second, then wait for 1 to 2 minutes. After 3 or 4 jogs the compressor can be started. This operation must be repeated for each compressor individually.

## System monitoring

The system must be monitored after initial startup for a minimum of 60 minutes to ensure proper operating characteristics such as:

- Correct superheat and subcooling.
- Current draw of individual compressors within acceptable values (max operating current).
- No abnormal vibrations and noise.
- Correct oil level.



If Oil Top-up is needed, it must be done while the compressor is idle. Use the schrader connector or any other accessible connector on the compressor suction line. Always use original Danfoss POE oil 160SZ from new cans. For more detailed information see "Lubricants filling in instructions for Danfoss Commercial Compressors" AP000086435866.

## **Dismantle and disposal**

Danfoss recommends that compressors and compressor oil should be recycled by a suitable company at its site



# Packaging

# Single pack



### Table 33: Single pack packaging

| Compressor | Length |      | Width |      | Height |      | Gross weight |     |
|------------|--------|------|-------|------|--------|------|--------------|-----|
| model      | mm     | inch | mm    | inch | mm     | inch | kg           | lbs |
| PSH052     | 750    | 29.5 | 750   | 29.5 | 1050   | 41.3 | 128          | 282 |
| PSH065     | 750    | 29.5 | 750   | 29.5 | 1050   | 41.3 | 131          | 289 |
| PSH079     | 750    | 29.5 | 750   | 29.5 | 1050   | 41.3 | 178          | 392 |
| PSH105     | 750    | 29.5 | 750   | 29.5 | 1050   | 41.3 | 195          | 430 |

# Industrial pack



### Table 34: Industrial pack packaging

| Compressor Compres- |                  | Length |      | Width |      | Height |      | Gross weight |      | Static stack- |
|---------------------|------------------|--------|------|-------|------|--------|------|--------------|------|---------------|
| model               | sors per<br>pack | mm     | inch | mm    | inch | mm     | inch | kg           | lbs  | ing pallets   |
| PSH052              | б                | 1150   | 45.3 | 965   | 38   | 768    | 30.2 | 693          | 1528 | 2             |
| PSH065              | 6                | 1150   | 45.3 | 965   | 38   | 768    | 30.2 | 712          | 1570 | 2             |
| PSH079              | 4                | 1150   | 45.3 | 965   | 38   | 800    | 31.5 | 678          | 1594 | 2             |
| PSH105              | 4                | 1150   | 45.3 | 965   | 38   | 800    | 31.5 | 744          | 1640 | 2             |



# Ordering

Danfoss scroll compressors PSH can be ordered in either industrial packs or in single packs. Please use the code numbers from below tables for ordering.

## **Single pack**

## Compressors compatible R454B and R410A



#### Table 35: Single pack compressors compatible R454B and R410A

|                  |             |                  | Code no.     |                       |          |  |
|------------------|-------------|------------------|--------------|-----------------------|----------|--|
| Compressor model | Connections | Motor protection | 3            | 4                     | 7        |  |
|                  |             |                  | 208-230/3/60 | 380-415/3/50 460/3/60 | 575/3/60 |  |
| PSH052           | Brazed      | Module 110-240V  | 120H2233     | 120H2229              | 120H2225 |  |
| PSH065           | Brazed      | Module 110-240V  | 120H2221     | 120H2217              | 120H2213 |  |
| PSH079           | Brazed      | Module 110-240V  | 120H2209     | 120H2205              | 120H2201 |  |
| PSH105           | Brazed      | Module 110-240V  | 120H2045     | 120H2197              | 120H2193 |  |
| PSH052           | Brazed      | Module 24V AC    | 120H2231     | 120H2227              | 120H2223 |  |
| PSH065           | Brazed      | Module 24V AC    | 120H2219     | 120H2215              | 120H2211 |  |
| PSH079           | Brazed      | Module 24V AC    | 120H2207     | 120H2203              | 120H2199 |  |
| PSH105           | Brazed      | Module 24V AC    | 120H2047     | 120H2195              | 120H2191 |  |

## **Industrial pack**

## Compressors compatible R454B and R410A



#### Table 36: Industrial pack compressors compatible R454B and R410A

|                  |             |                  | Code no.     |                       |          |  |
|------------------|-------------|------------------|--------------|-----------------------|----------|--|
| Compressor model | Connections | Motor protection | 3            | 4                     | 7        |  |
|                  |             |                  | 208-230/3/60 | 380-415/3/50 460/3/60 | 575/3/60 |  |
| PSH052           | Brazed      | Module 110-240V  | 120H2234     | 120H2230              | 120H2226 |  |
| PSH065           | Brazed      | Module 110-240V  | 120H2222     | 120H2218              | 120H2214 |  |
| PSH079           | Brazed      | Module 110-240V  | 120H2210     | 120H2206              | 120H2202 |  |
| PSH105           | Brazed      | Module 110-240V  | 120H2044     | 120H2198              | 120H2194 |  |
| PSH052           | Brazed      | Module 24V AC    | 120H2232     | 120H2228              | 120H2224 |  |



## Scroll compressors PSH052 to PSH105 | Ordering

|                  |             |                  |              | Code no.              |          |
|------------------|-------------|------------------|--------------|-----------------------|----------|
| Compressor model | Connections | Motor protection | 3            | 4                     | 7        |
|                  |             |                  | 208-230/3/60 | 380-415/3/50 460/3/60 | 575/3/60 |
| PSH065           | Brazed      | Module 24V AC    | 120H2220     | 120H2216              | 120H2212 |
| PSH079           | Brazed      | Module 24V AC    | 120H2208     | 120H2204              | 120H2200 |
| PSH105           | Brazed      | Module 24V AC    | 120H2046     | 120H2196              | 120H2192 |



# **Accessories and Spare parts**

# Solder sleeve adapter set



#### Table 37: Solder sleeve adapter set

| Code no. | Description                                            | Application | Packaging | Pack size |
|----------|--------------------------------------------------------|-------------|-----------|-----------|
| 7765028  | Rotolock adaptor set (2"1/4 ~ 1"5/8) , (1"3/4 ~ 1"1/8) | PSH052-079  | Multipack | 6         |
| 120Z0504 | Rotolock adaptor set (2"1/4 ~ 1"5/8), (1"3/4 ~ 1"3/8)  | PSH105      | Multipack | 6         |

# Rotolock adapter



#### Table 38: Rotolock adapter

| Code no. | Description                          | Application           | Packaging | Pack size |
|----------|--------------------------------------|-----------------------|-----------|-----------|
| 120Z0364 | Adaptor (1"3/4 Rotolock - 1"1/8 ODS) | Models with 1"1/8 ODF | Multipack | 10        |
| 120Z0431 | Adaptor (1"3/4 Rotolock - 1"3/8 ODS) | Models with 1"3/8 ODF | Multipack | 10        |
| 120Z0432 | Adaptor (2"1/4 Rotolock - 1"5/8 ODS) | Models with 1"5/8 ODF | Multipack | 10        |

## **Gaskets**



#### Table 39: Gaskets

| Code no. | Description   | Application                           | Packaging     | Pack size |
|----------|---------------|---------------------------------------|---------------|-----------|
| 8156132  | Gasket, 1"3/4 | Models with 1"3/4 rotolock connection | Multipack     | 10        |
| 7956003  | Gasket, 1"3/4 | Models with 1"3/4 rotolock connection | Industry pack | 50        |
| 8156133  | Gasket, 2"1/4 | Models with 2"1/4 rotolock connection | Multipack     | 10        |
| 7956004  | Gasket, 2"1/4 | Models with 2"1/4 rotolock connection | Industry pack | 50        |

# Solder sleeve



#### Table 40: Solder sleeve

| Code no. | Description                                    | Application                           | Packaging | Pack size |
|----------|------------------------------------------------|---------------------------------------|-----------|-----------|
| 8153004  | Solder sleeve P02 (1"3/4 Rotolock - 1"1/8 ODF) | Models with 1"3/4 rotolock connection | Multipack | 10        |
| 8153003  | Solder sleeve P10 (1"3/4 Rotolock - 1"3/8 ODF) | Models with 1"3/4 rotolock connection | Multipack | 10        |
| 8153006  | Solder sleeve P03 (2"1/4 Rotolock - 1"5/8 ODF) | Models with 2"1/4 rotolock connection | Multipack | 10        |

## Rotolock nut





### Scroll compressors PSH052 to PSH105 | Accessories and Spare parts

#### Table 41: Rotolock nut

| Code no. | Description         | Application                            | Packaging | Pack size |
|----------|---------------------|----------------------------------------|-----------|-----------|
| 8153124  | Rotolock nut,1"3/4  | Models with 1-3/4" rotolock connection | Multipack | 10        |
| 8153126  | Rotolock nut, 2"1/4 | Models with 2-1/4" rotolock connection | Multipack | 10        |

## **Motor protection modules**



### Table 42: Motor protection modules

| Code no. | Description                                   | Anulisation | Packaging   | Pack size |
|----------|-----------------------------------------------|-------------|-------------|-----------|
| Code no. | Description                                   | Application | Раскадінд   | Pack Size |
| 120Z0937 | Electronic motor protection module, 24 V AC   | PSH052-105  | Single pack | 1         |
| 120Z0938 | Electronic motor protection module, 110/240 V | PSH052-105  | Single pack | 1         |

## **Crankcase heaters**



#### Table 43: Belt type heaters

| Code no. | Description                                     | Application | Packaging     | Pack size |
|----------|-------------------------------------------------|-------------|---------------|-----------|
| 7773108  | Belt type crankcase heater,75W,230V,CE & UL     | PSH052-105  | Multipack     | 6         |
| 7973005  | Belt type crankcase heater,75W,230V,CE & UL     | PSH052-105  | Industry pack | 50        |
| 7773118  | Belt type crankcase heater,75W,400V,CE & UL     | PSH052-105  | Multipack     | 6         |
| 120Z0464 | Belt type crankcase heater,75W,460V,CE & UL     | PSH052-105  | Multipack     | 6         |
| 120Z0465 | Belt type crankcase heater,75W,575V,CE & UL     | PSH052-105  | Multipack     | 6         |
| 120Z0870 | Belt type crankcase heater,75W,24V,CE & UL      | PSH052-105  | Multipack     | 6         |
| 7773122  | Belt type crankcase heater, 130W, 230V, CE & UL | PSH052-105  | Multipack     | 4         |
| 7773123  | Belt type crankcase heater, 130W, 400V, CE & UL | PSH052-105  | Multipack     | 4         |

# **Mounting hardware**



#### Table 44: Mounting hardware

| Code no. | Description                                                                                           | Application | Packaging   | Pack size |
|----------|-------------------------------------------------------------------------------------------------------|-------------|-------------|-----------|
| 8156138  | Mounting kit for scroll compressors. Grommets, sleeves, bolts, washers                                | PSH052-079  | Single pack | 1         |
| 7777045  | Mounting kit for 1 scroll compressors including 4 hexagon rigid spacer, 4 sleeves, 4 bolts, 4 washers | PSH105      | Single pack | 1         |

### **Lubricant**



#### Table 45: Lubricant

| Code no. | Description                  | Packaging | Pack size |
|----------|------------------------------|-----------|-----------|
| 7754023  | POE lubricant, 1 litre can   | Multipack | 12        |
| 120Z0571 | POE lubricant, 2.5 litre can | Multipack | 4         |

Danfoss

## Terminal boxes, covers and T-block connectors



#### Table 46: Terminal boxes, covers and T-block connectors

| Code no. | Description                            | Application | Packaging   | Pack Size |
|----------|----------------------------------------|-------------|-------------|-----------|
| 120Z0774 | T block connector 80 x 80 mm           | PSH052-105  | Multipack   | 10        |
| 120Z0458 | Terminal box 210 x 190 mm, incl. cover | PSH052-105  | Single pack | 1         |

## **Acoustic hoods**



#### Table 47: Acoustic hoods

| Code no. | Description       | Application | Packaging   | Pack Size |
|----------|-------------------|-------------|-------------|-----------|
| 120Z0926 | Acoustic hood PSH | PSH052-105  | Single pack | 1         |

## **Miscellaneous**



#### Table 48: Miscellaneous

| Code no. | Description                                      | Packaging   | Pack Size |
|----------|--------------------------------------------------|-------------|-----------|
| 8156019  | Sight glass with gaskets (black & white)         | Multipack   | 4         |
| 8156129  | Gasket for oil sight glass, 1"1/8 (white teflon) | Multipack   | 10        |
| 7956005  | Gasket for oil sight glass, 1"1/8 (white teflon) | Multipack   | 50        |
| 8154001  | Danfoss Commercial Compressors blue spray paint  | Single pack | 1         |

## Tandem kits



### Table 49: Tandem kits

| Code no. | Description                                        | Application     | Packaging   | Pack Size |
|----------|----------------------------------------------------|-----------------|-------------|-----------|
| 120Z0792 | Kit Tandem, Solid, OEL 1" 3/8                      | PSH104-130-158E | Single pack | 1         |
| 120Z0904 | Kit PSH Tandem, solid, washer 27/28 mm, OEL 1" 5/8 | PSH170U         | Single pack | 1         |
| 120Z0903 | Kit PSH Tandem, solid, washer 27/28 mm, OEL 1" 5/8 | PSH184U         | Single pack | 1         |
| 120Z0785 | Kit Tandem, Solid,OEL 1"5/8                        | PSH210E         | Single pack | 1         |



# <u>Trio kits</u>



### Table 50: Trio kits

| Code no. | Description                                      | Application | Packaging   | Pack Size |
|----------|--------------------------------------------------|-------------|-------------|-----------|
| 120Z0901 | Kit PSH Trio, solid, washer 29 mm, OEL 1" 5/8    | PSH263-289T | Single pack | 1         |
| 120Z0902 | Kit PSH Trio, solid, washer 32/33 mm, OEL 1" 5/8 | PSH315T     | Single pack | 1         |
| 120z0900 | Kit PSH Trio, solid, washer 30/31mm, OEL 1" 5/8  | PSH237T     | Single pack | 1         |

## **Online support**

Danfoss offers a wide range of support along with our products, including digital product information, software, mobile apps, and expert guidance. See the possibilities below.

#### **The Danfoss Product Store**



The Danfoss Product Store is your one-stop shop for everything product related—no matter where you are in the world or what area of the cooling industry you work in. Get quick access to essential information like product specs, code numbers, technical documentation, certifications, accessories, and more.

Start browsing at store.danfoss.com.

#### Find technical documentation



Find the technical documentation you need to get your project up and running. Get direct access to our official collection of data sheets, certificates and declarations, manuals and guides, 3D models and drawings, case stories, brochures, and much more.

Start searching now at www.danfoss.com/en/service-and-support/documentation.

#### **Danfoss Learning**



Danfoss Learning is a free online learning platform. It features courses and materials specifically designed to help engineers, installers, service technicians, and wholesalers better understand the products, applications, industry topics, and trends that will help you do your job better.

Create your Danfoss Learning account for free at www.danfoss.com/en/service-and-support/learning.

#### Get local information and support



Local Danfoss websites are the main sources for help and information about our company and products. Find product availability, get the latest regional news, or connect with a nearby expert—all in your own language.

Find your local Danfoss website here: www.danfoss.com/en/choose-region.

#### Coolselector<sup>®</sup>2 - find the best components for you HVAC/R system



Coolselector<sup>®</sup>2 makes it easy for engineers, consultants, and designers to find and order the best components for refrigeration and air conditioning systems. Run calculations based on your operating conditions and then choose the best setup for your system design.

Download Coolselector<sup>®</sup>2 for free at coolselector.danfoss.com.

#### **Ref Tools – essential tools for HVACR professionals**



Get the guidance, support, information, and tools you need—on the job and in field. Ref Tools is a free, powerful app that contains essential tools every air conditioning and refrigeration technician needs in their digital toolbelt.

Download Ref Tools for free at coolapps.danfoss.com

**Danfoss A/S** Climate Solutions • danfoss.com • +45 7488 2222

Any information, including, but not limited to information on selection of product, its application or use, product design, weight, dimensions, capacity or any other technical data in product manuals, catalogues descriptions, advertisements, etc. and whether made available in writing, orally, electronically, online or via download, shall be considered informative, and is only binding if and to the extent, explicit reference is made in a quotation or order confirmation. Danfoss cannot accept any responsibility for possible errors in catalogues, brochures, videos and other material. Danfoss reserves the right to alter its products without notice. This also applies to products ordered but not delivered provided that such alterations can be made without changes to form, fit or function of the product. All trademarks in this material are property of Danfoss A/S or Danfoss group companies. Danfoss and the Danfoss logo are trademarks of Danfoss A/S. All rights reserved.

Danfoss

ENGINEERING TOMORROW